

# SUPERRADIANCE AND CASCADED DECAY

Laurin Ostermann, Hashem Zoubi, Helmut Ritsch

Institute for Theoretical Physics, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria

### **Introduction and Goals**

• Study of collective decay processes of atoms in optical lattices

- Analysis of collective effects in different geometric configurations by analytical and numerical methods
- Going beyond the single-excitation or small sample limit and treating the full system for arbitrary configurations
- Predicting, understanding and controlling energy shifts and linewidths of atomic ensembles in optical lattices
- Contributing to precision gains in Optical Lattice Clocks
- Next: Study of these ensembles inside optical cavities and contributing to the advancement of narrow-linewith lasers

#### Configurations 3

Systems considered include an equilateral triangle of length *a* with polarisation angle  $\theta = \pi/2$  and a chain of three atoms with lattice constant *a* and arbitrary polarisation angle. In numerical simulations we go to longer chains of up to seven atoms





Approach: the triangle can be treated fully analytically, the chain of three already needs numerics, but is still explicitly solvable. Longer chains are best done in MCWF-simulations.



## Model

*N* Two-Level systems coherently coupled through resonant dipole-dipole interactions mediated by virtual photons



The system's Hamiltonian is given by

$$\hat{H} = \sum_{i} \omega_i \hat{S}_i^{\dagger} \hat{S}_i^{-} + \sum_{i \neq j} \Omega_{ij} \hat{S}_i^{\dagger} \hat{S}_j^{-}$$

where  $\omega_i$  is the transition energy in the *i*-th atom and  $\Omega_{ij}$  the resonant coupling between atom *i* and *j*. The dissipation is treated in an ensemble average approach with the master equation

$$\dot{\hat{\rho}} = -\frac{i}{\hbar} \left[ \hat{H}, \hat{\rho} \right] - \mathscr{L}_{cd} \left[ \hat{\rho} \right]$$

with the Liouvillian

$$\mathscr{L}_{cd}\left[\hat{\rho}\right] = \frac{1}{2} \sum \Gamma_{ij} \left(\hat{S}_i^+ \hat{S}_j^- \hat{\rho} + \hat{\rho}\hat{S}_i^+ S_j^- - 2\hat{S}_i^- \hat{\rho}\hat{S}_j^+\right)$$

### **Ramsey Signal**

With these two configurations we look at the Ramsey signal, that emerges if we start with all atoms in the ground state, apply a resonant  $\pi/2$ -pulse ('Hadamard'-gate) to each atom, then leave the systems to its free dynamics, and after a time t apply a second (in-phase)  $\pi/2$ -pulse, again to each atom. The plot shows the survival probability of the totally excited state *e* as a function of the time *t* in between the two pulses.

$$|g\rangle^{\otimes N} \longrightarrow \frac{\pi}{2} - \operatorname{Pulse} \longrightarrow (|g\rangle + |e\rangle)^{\otimes N} \longrightarrow U(t) \longrightarrow \frac{\pi}{2} - \operatorname{Pulse} \longrightarrow |f\rangle \longrightarrow P_{|e\rangle^{\otimes N}}$$

#### Results 4

# Triangle

### Chain

The decay cascade of the triangle shows a twofold degen-By less symmetry in the chain the degeneracy is lifted and eracy for the single- and bi-excitation downwards-shifted the shifts become unambiguous.





<sup>2</sup> ij

featuring the collective damping  $\Gamma_{ij}$  between the *i*-th and *j*-th atom. The collective coupling and decay depend on the system's geometry and the orientation of the transition dipole relative tot the atom's spacial distribution.

$$\Omega_{ij} = \frac{3\sqrt{\Gamma_i \Gamma_j}}{4} G(k_0 r_{ij}) \qquad \Gamma_{ij} = \frac{3\sqrt{\Gamma_i \Gamma_j}}{2} F(k_0 r_{ij})$$

For  $\xi = k_0 r_{ij} = 2\pi r_i j / \lambda_0$  and the polarisation angle  $\theta$  we have

$$F(\xi) = \left(1 - \cos^2 \theta\right) \frac{\sin \xi}{\xi} + \left(1 - 3\cos^2 \theta\right) \left(\frac{\cos \xi}{\xi^2} - \frac{\sin \xi}{\xi^3}\right)$$
$$G(\xi) = -\left(1 - \cos^2 \theta\right) \frac{\cos \xi}{\xi} + \left(1 - 3\cos^2 \theta\right) \left(\frac{\sin \xi}{\xi^2} + \frac{\cos \xi}{\xi^3}\right)$$





Intermediate occupations are of the form



The closer the atoms are positioned, the faster the decay process will populate the ground state.

 $\rho(t)$  for  $a = \lambda_0/10$  and  $a = \lambda_0/5$ 





#### **Ramsey Signal**

We now look at the survival probability of the fully inverted state of these configurations in the Ramsey sequence. The signal is compared to the case of three independent atoms.

#### **Rate of Energy Emission**

To quantify how fast the system's energy is lost to the environment we define

#### 0.5()1.5 $r_{ij}/\lambda$

A distance of special interest is the magic wavelength for the clock transition in  ${}^{87}Sr$  (trapping wavelength at which light shifts are cancelled)

 $\frac{\lambda_m}{2\lambda_0} = 0.5824$ 

# **References and Acknowledgements**

- Z. Ficek, R. Tanas: Physics Reports 372, 369 2002)
- M. Takamoto, H. Katori: Phys. Rev. Lett. 91, 223001 (2003)
- G. K. Campbell et al: Metrologia 45, 539 (2008)
- H. Zoubi: arXiv:1203.2094 (2012)
- This work was supported by DARPA through the QUASAR project.



 $I(t) = -\partial_t \langle \hat{H} \rangle_{\rho(t)}$ 

as the rate of energy emission. The plot shows the emission rate for different distances. Notice that the distances need to be quite small in order to show a significant superradiant behaviour.

I(t) (normalized)

