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Abstract

Ultracold optical lattice atomic clocks have made it to the forefront of timekeeping
and spectroscopy over the last decade. A prominent example, that features a relative
precision of 2 · 10�18 in the measurement of one second, is the 87Sr lattice clock at
NIST in Boulder, CO. A plethora of fundamental shifts and perturbations has been
successfully dealt with in order to arrive at such an admirable measurement accuracy.
Yet, there are still phenomena that have not played a limiting role so far, but will
become prevalent in the next decade. One of these is dipole-dipole interaction, which
constitutes the main subject of this work.

Quantum emitters in close proximity to each other can exchange energy through free
space vacuum modes and thus feature shifts and altered spontaneous emission rates in
their collective states. Collective spontaneous emission exhibits a drastically di↵erent
behaviour than emission from a single source: constructive interference can lead to
increased spontaneous emission rates, i.e., superradiance, and destructive interference
to decreased rates, i.e., subradiance, respectively. As these emission processes are
stochastic they constitute a fundamental, inherently uncontrollable perturbation in
spectroscopy setups such as atomic clocks.

In this work, we investigate the e↵ect of super- and subradiance on to the Ramsey
signal obtained from interacting quantum emitters with a particular focus on 87Sr.
We show that even small numbers of atoms at high densities can lead to large
detrimental e↵ects on precision. Consequently, we suggest an alteration to the Ramsey
measurement scheme, where we use phase separation between the individual emitters
in order to replace their superradiant behaviour by a subradiant one. This allows
for a vast increase in probing time and ultimately a much better sensitivity in the
spectroscopic procedure. We investigate our proposed technique for larger systems
and find that the increase in probing time scales almost exponentially with the system
size, indicating promising results for clock setups.

Furthermore, we develop a procedure that allows subradiant states to be prepared
directly as opposed to preparing them by phase alteration. We use phase imprinting
in the excitation laser or a large magnetic field gradient to realize almost perfect
Rabi oscillations between the collective ground state and the slowest decaying, most
subradiant, states in the single- and double-excitation manifold.

And, we employ our findings to study a superradiant laser, whose active medium
is given by atoms sitting in a magic wavelength optical lattice. Here, we find that,
at magic wavelength distance, the negative e↵ects of dipole-dipole interaction can be
largely ignored, while they become prominent at smaller lattice constants.
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In additional research conducted during my doctoral studies, we use a mean-field
treatment to calculate collective shifts and rates for realistically large systems of
emitters in various geometries and find that square or hexagonal lattices seem to
suppress collective emission, i.e., feature subradiance, the most.

In a conceptually similar fashion, closely collaborating with the Innsbruck-based
experimental photonics group, we investigate emission properties from a quantum dot,
where exciton and biexciton emission form a cascade of decay. This setup is aimed at
creating time-bin entangled photons, yet other procedures like a Rabi oscillation or a
Ramsey scheme have been implemented as well.
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Zusammenfassung

Über die letzten Jahrzehnte wurden Atomuhren, die auf ultrakalten Atomen in opti-
schen Gittern basieren, zur Speerspitze der Zeitmessung und der Spektroskopie. Ein
sehr prominentes Beispiel dafür ist die 87Sr-Gitteruhr am NIST in Boulder, Colorado,
mit der sich eine relative Messgenauigkeit von 2 · 10�18 bei der Messung einer Sekunde
erzielen lässt. Um diese beinahe unvorstellbare Genauigkeit zu erreichen war es notwen-
dig, eine Vielzahl von störenden E↵ekten zu beachten und erfolgreich zu kontrollieren.
Es gibt allerdings weitere Phänomene, die in den nächsten Jahren für eine erneute
Verbesserung der Gitteruhren relevant sein werden, wenn sie auch bis heute noch keine
allzu große Rolle spielen. Eines dieser Phänomene ist die Dipol-Dipol-Wechselwirkung,
das Hauptaugenmerk dieser Arbeit.

Kollektive Zustände individueller Quantensysteme, die sich räumlich sehr nahe bei-
einander befinden, können durch Energieaustausch mittels Vakuummoden des freien
Raums, Energieverschiebungen oder veränderte spontane Emissionsraten ausbilden.
Kollektive Emission verhält sich dabei im Vergleich zu Emissionen von Einzelquellen
sehr unterschiedlich: konstruktive Interferenz kann zu erhöhten spontanen Emissions-
raten, der sog. Superradianz, führen, während destruktive Interferenz in verringerten
Raten, der Subradianz, resultiert. Nachdem es sich bei diesen spontanen Emissionen
um stochastische Prozesse handelt, die intrinsisch unkontrollierbar sind, stellen sie
eine fundamentale Schranke für die Spektroskopie und damit für Atomuhren dar.

Diese Arbeit untersucht die Auswirkungen von Super- und Subradianz auf das
Ramsey-Signal eines Ensembles von wechselwirkenden Quantensystemen, wobei wir
einen Fokus auf 87Sr legen. Wir zeigen, dass sich sogar bei einer kleinen Anzahl von
Atomen hoher Dichte nachteilige E↵ekte feststellen lassen. Daher schlagen wir ein
verändertes Ramsey Messschema vor, indem wir Phasenseparation zwischen den ein-
zelnen Quantensystemen ausnutzen, um superradiantes Verhalten durch subradiantes
zu ersetzen. Dadurch erreichen wir einen beachtlichen Zuwachs der Interrogationszeit
und letztlich eine verbesserte Sensitivität der spektroskopischen Prozedur. Wir unter-
suchen die vorgeschlagene Technik für größere Systeme und stellen fest, dass sich der
Gewinn in der Interrogationszeit beinahe exponentiell zur Systemgröße verhält, ein
vielversprechendes Ergebnis für Atomuhren.

Des weiteren entwickeln wir ein Verfahren, mit dem sich subradiante Zustände direkt
präparieren lassen, anstatt diese durch Veränderungen der Phasen zu erzeugen. Mittels
einer im Anregungslaser eingeschriebenen Phase oder eines Magnetfeldgradienten lassen
sich beinahe perfekte Rabi-Oszillationen zwischen dem kollektiven Grundzustand und
den am langsamsten zerfallenden, den subradiantesten, Zuständen im Subraum von
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ein und zwei Anregungen erreichen.

Außerdem untersuchen wir einen superradianten Laser, dessen aktives Medium
durch in einem ’magic wavelength’ Gitter befindliche Strontium-Atome gegeben ist.
Wir zeigen, dass negative E↵ekte durch Dipol-Dipol-Wechselwirkung bei einem magic
wavelength Gitter nahezu vernachlässigt werden können, während sie bei kleineren
Gitterabständen relevante Störungen darstellen.

In weiteren Forschungsarbeiten, die während meines Doktorats entstanden sind,
benützen wir einen molekularfeldtheoretischen Formalismus, um Frequenzverschiebun-
gen und Zerfallsraten in realistisch großen Systemen unterschiedlicher Geometrien zu
berechnen. Es zeigt sich dabei, dass quadratische und hexagonale Gitter spontanen
Zerfall am besten zu unterdrücken scheinen, also am ehesten subradiante Zustände
ausbilden.

In einer konzeptionell verwandten Arbeit untersuchen wir, gemeinsam mit experimen-
tellen Photonikern, Emissionseigenschaften eines Quantum Dot, in dem Exziton- und
Biexziton-Emissionen eine Zerfallskaskade bilden. Dieser Aufbau dient vornehmlich zur
Erzeugung von zeitgeordnet verschränkten Photonen, wobei auch andere Prozeduren,
wie Rabi-Oszillationen oder ein Ramsey-Schema, umgesetzt werden konnten.
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Abschließend möchte ich meiner erweiterten Familie, allen meinen Freunden, Ar-
beitskollegen, Mitmusikern und allen anderen Wegbegleiterinnen und Wegbegleitern
danken, die nicht explizit erwähnt wurden.

viii



Contents

1 General Introduction 1
1.1 Historical Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Methodological Overview 5
2.1 Systems under Consideration . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Coherent and Dissipative Dynamics . . . . . . . . . . . . . . . . . . . 7

3 Atomic Clocks 11
3.1 Concept and Implementations . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Limits of Ultra High Precision Atomic Clocks . . . . . . . . . . . . . . 17
3.3 Ramsey Measurement Procedure . . . . . . . . . . . . . . . . . . . . . 23

4 Spontaneous Emission 29
4.1 Phenomenon and Concept . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Single Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Ensemble of Emitters . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Super- and Subradiance . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Publication: Cascaded Collective Decay in Cold Trapped Atoms 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Collective System Dynamics and Examples . . . . . . . . . . . . . . . 51
5.4 Superradiance in Larger Extended Arrays . . . . . . . . . . . . . . . . 58
5.5 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Publication: Protected State Enhanced Quantum Metrology 61
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Two Atoms Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Publication: Protected Subspace Ramsey Spectroscopy 73
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ix



Contents

7.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Standard Ramsey Interferometry . . . . . . . . . . . . . . . . . . . . . 76
7.4 Protective Ramsey Technique . . . . . . . . . . . . . . . . . . . . . . . 78
7.5 Larger Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Publication: Selective Protected State Preparation 91
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Publication: A Superradiant Laser on a Magic Wavelength Optical Lattice109
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.3 Superradiant Laser Dynamics with Confined Ensembles . . . . . . . . 113
9.4 Laser Stability and Frequency Shifts for Di↵erent Atomic Distances . 117
9.5 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 120

10 Conclusions 123
10.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.2 Future Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 124

11 Publication: Optimized Geometries for Future Generation Optical Clocks 127
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.3 Mean Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . 131
11.4 Symmetric Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.5 Finite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.6 Infinite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
11.7 Tailoring Atomic Excitations . . . . . . . . . . . . . . . . . . . . . . . 133
11.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.9 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . 136

12 Publication: Coherence and Time-bin Entanglement from a Quantum Dot143
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.2 Biexciton Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
12.3 Time-Bin Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.4 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
12.5 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
12.6 Entanglement Requirements . . . . . . . . . . . . . . . . . . . . . . . . 149
12.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
12.8 Supplemental Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography 161

x



1 General Introduction

In this thesis we analyze the e↵ect of dipole-dipole interaction on the measurement pre-
cision in ultracold optical lattice atomic clocks. We suggest and study an improvement
to the standard measurement procedure, that can lead to a superior accuracy. We
investigate a close cousin of optical lattice clocks, namely a superradiant laser, where
the same physics is present, but used to build a laser with a very narrow linewidth.
Some other related subjects, like state preparation or optimizing geometries, are
touched as well.

1.1 Historical Introduction

Measuring and keeping time has always been a crucial capability for humanity. From
ancient cultures to the modern day, having an accurate sense of time has been of
great importance. Be it in simple every-day life, communication, navigation, or even
warfare, knowing the time and having it synchronized among multiple places has been
the key to carrying out all these e↵orts.

Departing from very simple observations of the stars and the earth’s relative
orientation towards the sun throughout a day, early cultures soon constructed more
involved clocks and could tell the time of the day fairly precisely. During the epoch of
renaissance and also in the age of enlightenment great advances in terms of clocks
were made. Mechanical oscillators with springs or pendulums came into play. In the
last century, two significant discoveries lead to an even more accurate measurement
of time: first, the piezo-electric properties of quartz were found, which allowed for
building clocks that would surpass the mechanical devices by orders of magnitude and
secondly, the insight that electronic transitions in atoms could be used as frequency
standards.

This lead to the construction of atomic clocks with a first proof of concept experiment
in 1949 and a working device shortly thereafter. Atomic clocks advanced in their
precision over the last decades, with more and more perturbations accounted for and
corrected, and every so steadily increasing experimental and technical skill. Ultimately,
we stand at a level of a relative precision of 2 · 10�18 in the measurement of one second
in current state of the art Strontium optical lattice clocks.

At this level, fundamental interactions among the atoms start to constitute perturb-
ations that need to be dealt with. One of these is dipole-dipole interaction and its
resulting collective decay, the main focus of the present thesis. Through the inherent
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1 General Introduction

coupling of electronic transition dipoles to the free space vacuum modes of light, a
coherent and dissipative exchange of energy amongst them is possible. In this work,
we focus on understanding and quantifying the phenomenon as well as investigating
possibilities to exploit it in order to help increase the clock precision even further.

1.2 Motivation

As stated above, the prime motivation for this work is contributing to an increase
in measurement precision in ultracold optical lattice atomic clocks. At a relative
uncertainty of about 10�18, one fundamental perturbation is constituted by energy
exchange and collective spontaneous emission facilitated through the interaction among
atomic transition dipoles.

Depending on the geometry of the clock setup, dipole-dipole interaction can have
various, almost diametrically opposite, e↵ects. Generally, apart from the shift of
collective electronic levels mediated by coherent dipole-dipole energy exchange, the
phenomena of super- and subradiance start to appear. Superradiance is the result
of constructively interfering spontaneous emission and features an overall increased
collective spontaneous emission rate, that can be as large as N2 times the single
emitter decay rate with N being the number of interacting emitters. On the other
hand, subradiance due to destructive interference can facilitate an almost zero e↵ective
decay rate, yielding extremely long-lived states. It is important to realize that both
these processes are stochastic and thus, a precise control over them is inherently
impossible. Therefore, the concrete aim lies in reducing the negative e↵ects of the
collective spontaneous emission on the measurement as far as possible.

In that fashion the idea to use subradiant collective states in order to increase
the precision in optical lattice clocks could be viewed as the main goal of this work.
A thorough study of the consequences of super- and subradiance in clock systems
precedes this goal and various other investigations around it, e.g., its scalability, its
feasibility and suggestions for implementations need to be performed as well.

1.3 Outline of this Thesis

We begin by briefly introducing the mathematical formalism and the concepts that we
need to perform quantum mechanical and quantum optical calculations. This provides
the framework for all the investigations we carry out in the course of this work.

In chp. 3 we move on to time keeping and atomic clocks in particular. We shortly
discuss time keeping in general and give a historical overview of how time has been
measured throughout the ages, finally arriving at atomic clocks and optical lattice
clocks. We discuss their setup and their limitations in detail and conclude with a
description of the Ramsey measurement technique, that sits at the heart of atomic
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1.3 Outline of this Thesis

clocks.

Chapter 4 is devoted to the phenomenon of spontaneous emission. We begin with
a heuristic treatment following Einstein’s original work and transition to quantum
electrodynamics and consider the spontaneous emission from a single quantum emitter
as well as from an ensemble of emitters, which ultimately forms the basis for a large
part of our investigations. Here, dipole-dipole interaction is introduced and we discover
super- and subradiance, which is discussed in great detail for two emitters and will be
generalized in the following chapters.

Moving on to the publications that make up this thesis, chp. 5 studies super-
and subradiance at the example of extended toy models. In addition, this paper
highlights the e↵ect of dipole-dipole interaction and collective decay to the Ramsey
measurement scheme. The next publication, presented in chp. 6 suggests an alteration
of the Ramsey measurement technique, employing subradiant states, which allow
for a longer interrogation time and ultimately an increased measurement precision.
This investigation is continued in chp. 7, where the focus lies on scaling laws and
implementations of the suggested technique.

Next, in chp. 8 we look at the possibility to address these subradiant or ‘protected’
states directly by means of imprinted phases in the excitation or external fields. The
last publication, chp. 9 constituting the bulk of this work deals with superradiant
lasers, which are methodologically very similar to what we have done before, except
for the fact that a cavity and a pump are added.

We round up our findings with conclusions and suggestions for further investigations
that could be based upon this work.

Chapter 11 and chp. 12 are two publications that are somewhat connected to the
rest of this work, conceptually or methodologically. But they would rather qualify as
additional research that was conducted during my doctoral studies. The first deals
with optimizing geometries for optical lattice clocks, where a mean-field formalism
could be used in order to calculate shifts and collective decay rates for realistically
large systems, while in the latter we have investigated emission properties from a
quantum dot, largely using the same methods as in the rest of this thesis.
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2 Methodological Overview

Before we begin to discuss physical systems, this chapter aims at giving a short sum-
mary of the methodological and mathematical background of the research constituting
the present thesis. Overall, we deal with open quantum systems and rely on a full
quantum treatment of these. Calculations were performed analytically where ever
possible, yet larger system sizes or more involved expressions needed to be evaluated
numerically. A comprehensive introduction to the methodology can be found in any
standard quantum mechanics textbook, e.g. [1–4].

2.1 Systems under Consideration

A large part of this work deals with ensembles of quantum emitters modelled as two-

level systems, where the Hilbert space of the ensemble can be written as H =
�
C2

�⌦N
,

with N being the number of individual emitters. Each of these two-level systems has
two distinct states, one of lower energy and one of higher energy. Usually, we call the
lower state the ground state |gi and the upper state the excited or inverted state |ei.
This is mathematically equivalent to the description of a spin-1/2 system, which we
will often use synonymously.

On the level of the individual systems dynamics and measurements can be written
by using superpositions of the three Pauli matrices and the identity matrix with

�x = |ei hg| + |gi he| , (2.1a)

�y =i (|ei hg| � |gi he|) , (2.1b)

�z = |ei he| � |gi hg| , (2.1c)

1 = |ei he| + |gi hg| . (2.1d)

Dynamics and observables on the compound systems are then realized by writing
down the tensor product of the desired operators in the combined Hilbert space, e.g.

Sz =
1

2

X
j

�j
z =

1

2
(�z ⌦ 1 · · · ⌦ 1 + 1 ⌦ �z ⌦ · · · ⌦ 1 + . . . ) (2.2)

and so on, where any combination of operators can be used. The commutation relation
among the individual Pauli matrices can be extracted from the relation

�↵�� = i
X
�

✏↵���� + �↵�1, (2.3)
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2 Methodological Overview

|gi |gi |gi |gi

|ei |ei |ei |ei

Figure 2.1: Example of Bloch spheres. Their south pole represents the ground state
|gi and their north pole the excited state |ei. The visualized states (from
left to right) are the three pure states |gi, |ei and 1/

p
2 (|gi + |ei) as

well as the mixed state |ei he| + |gi hg|.

with the Levi-Civita symbol ✏↵�� and the Kronecker Delta �↵� . There are two further,
non-Hermitian, operators that we will use frequently, namely

�+ = |ei hg| (2.4a)

�� = |gi he| , (2.4b)

the so-called rising and lowering operators.

A typical picture that is used in the context of two-level systems is the Bloch sphere,
where the pure state of a system can be visualized as a point on the surface of the
sphere and any mixed state will appear as a point inside the sphere. This results from
the fact that any (pure) state can be written as

| i = exp (i'/2) cos (✓) |gi + exp (�i'/2) sin (✓) |ei (2.5)

with the polar angle ✓ and the azimuth angle '. Mixed states will appear as super-
positions of projectors onto several pure states. Figure 2.1 depicts di↵erent states of a
two-level system using Bloch spheres. Besides allowing for the visual representation of
the state of a system, Bloch spheres can also be used to visualize dynamics within the
system. An operation generated by any of the Pauli matrices will result in a rotation
about the respective axis of the sphere.

Similarly, the di↵erent states of a light field can be represented by using a Fock
space [5]. Put simply, the Fock states |ni, where n 2 N

0

, describe a system where
n photons are present in a particular light mode given by its wave vector ~k and
polarization �. If the light field in second quantization is viewed as a harmonic
oscillator the quadrature components of the kinetic and potential energy parts can be
expressed in terms of ladder operators a and a† with the following properties,

a |ni =
p

n |n � 1i , (2.6a)

a† |ni =
p

n + 1 |n + 1i (2.6b)
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2.2 Coherent and Dissipative Dynamics

and a |0i = 0. Of course, a quantum system can be in superpositions of di↵erent
Fock states, with the coherent state |↵i = D (↵) |0i being a prime example for such a
superposition. D (↵) is called the displacement operator and reads

D (↵) = exp
⇣
↵a† � ↵⇤a

⌘
. (2.7)

In this work, we will deal with two very di↵erent cases of light fields. When deriving
the spontaneous emission rates of single atoms and ensembles of emitters we will rely
on a light field that permits any wave vector and both polarizations, i.e., we allow for
all free space light modes. When investigating the superradiant laser, however, only
one single mode chosen through the properties of the laser cavity will be relevant.

2.2 Coherent and Dissipative Dynamics

With these two elementary quantum optical building blocks, we are now able to
describe the behaviour of a system made up by two-level emitters and light modes.
Typically, we will find two types of interactions within such a system: coherent,
energy-conserving processes and dissipative, lossy processes.

The energy-conserving processes and the underlying dynamics can be captured
by writing down the Hamiltonian operator. This operator describes all the energies
and energy-conserving interactions that are present in the system. We will encounter
many di↵erent Hamiltonians throughout this work, but, as an example, let us mention
a fairly typical one, involving one two-level system and one light mode, i.e., the
Jaynes-Cummings Hamiltonian [6]. It reads

H =
!

0

2
�z + !la

†a + g
⇣
��a† + �+a

⌘
, (2.8)

with the atomic transition frequency !
0

, the frequency of the light mode !l and the
coupling strength between the atom and the light mode g. In a reduced subspace, we
could now diagonalize this expression in order to find the eigenstates and energies
present in the system and study its behaviour under variation of the model parameters,
etc. With a Hamiltonian at hand, the dynamics in the system can be calculated by
means of the Schrödinger equation [7],

i@t | i = H | i , (2.9)

which allows us to model a system in a pure state. A formal solution of this equation
is

| (t)i = U(t) | (0)i = exp (�iHt) | (0)i , (2.10)

where U(t) is usually called the evolution operator. However, if the system is in a
mixed state, we will need to describe its properties by the use of a density operator
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⇢, which is a weighted superposition of projectors onto di↵erent (not necessarily
orthogonal) states, i.e.

⇢ =
X

j

cj | ji h j | , (2.11)

with the properties tr (⇢) = 1, ⇢jj � 0 and ⇢jk = ⇢⇤
kj . For this case, we will employ a

sort of generalization of the Schrödinger equation to mixed states, the so-called von
Neumann equation,

@t⇢ = i [⇢, H] , (2.12)

where the square brackets represent the commutator [⇢, H] = ⇢H � H⇢.

The von Neumann equation can easily be generalized to include incoherent dissipative
processes, that will reduce or increase the overall energy in the system or manipulate
its coherences, while ensuring that the total population in the system is preserved.
This equation is called master equation [8] and besides the commutator present above
it includes a second term that is usually called the Liouvillian. It reads

@t⇢ = i [⇢, H] + L [⇢] . (2.13)

A master equation in our case is derived by writing down a complete model of the
system (e.g., atoms + free space modes) and then eliminating part of the model by
partially tracing out subsystems from the Hilbert space. In the case of spontaneous
emission of a single atom, which we discuss below, the Liouvillian would read

L [⇢] =
�

2

�
2��⇢�+ + �+��⇢+ ⇢�+��� . (2.14)

In this case excited state population will decay to the ground state |gi with a rate
of �. The last two terms in the Liouvillian are responsible for the actual exponential
decay of the state |ei, while the first term, dubbed ‘recycling term’ ensures that the
overall population of the system is constant. This means that when the excited state
loses amplitude, this amplitude needs to end up in the ground state, so that the overall
normalization of the system tr (⇢) = 1 is satisfied.

Now, knowing the entire dynamics of the system, we can extract information from
it by calculating expectation values and their rms deviations which corresponds to
an average over measurements and their uncertainties. Given an operator A that
represents a certain observable, for instance ‘What is the energy in my non-interacting
two-level system?’, where A would be A = (!

0

/2)�z, the expectation values and their
root mean square (rms) deviations can be calculated as

hAi = h |A| i , �A =
q

hA2i � hAi2 (2.15)

for pure states and
hAi = tr (⇢A) (2.16)

for mixed states.
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2.2 Coherent and Dissipative Dynamics

With this, we would like to conclude the short methodological overview of the
mathematical concepts that lie at the foundations of quantum mechanics as it seems,
this compact illustration will su�ce for an understanding of the next chapters. At
any point, each publication or chapter will define and explain the necessary tools
in a much more involved, yet less general way, than it has been done here. For a
comprehensive treatment or extensive discussions we would like to refer to quantum
mechanics [1–4] or quantum optics [9–15] textbooks as mentioned in the beginning.
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3 Atomic Clocks

The precise measurement of time has always been at mankind’s interest. In ancient
times mathematicians and astronomers employed the planetary motion of both the
earth around the sun and the earth’s precession about its axis to come up with a
calendar and ultimately a time standard based on the time between sunrise and sunset
resulting in the construction of reasonably precise sundials [16].

The first workable concept of a mechanical clock involving the use of an oscillator
powered by an escapement, which would allow for a controlled release of energy
determining the overall rate at which a clock device moves, was proposed around 1250
by the French architect Villard de Honnecourt [17] and some historians claim that
such a device was built at the court of Louis IX [18]. This clock did not have any
hands yet, but was rather used to sound a bell at regular intervals.

In the 16th century, Galileo Galilei discovered [19] that the frequency of a pendulum
is not influenced by its amplitude or velocity, but rather a fairly constant property,
involving the length of the pendulum l and material properties only. In the simplifying
mathematical model of a pendulum its frequency is given by

2⇡ · ⌫ =

r
g

l
, (3.1)

with g being the gravitational acceleration, while in the more involved physical
pendulum the frequency yields

2⇡ · ⌫ =

r
mgd

I
(3.2)

with the moment of inertia I, its mass m and d the distance between the pendulum’s
point of suspension and its centre of mass [20].

From that point on time keeping was dominated by mechanical oscillators and a
first patent for a spring-based pendulum clock was granted to Christian Huygens in
1657 [21]. Over the next 200 years, the mechanics became more and more precise [22,23]
culminating in a marine chronometer built by John Harrison [24] with a relative
precision of ±5 s in 10 weeks, i.e., ⇡ 2 · 10�6.

In the 1880s the piezo-electric properties of crystalline quartz were discovered by
Jacques and Pierre Currie [25], which lead to a new generation of time keeping devices
with the first quartz clock being built in 1927 [26]. From 1929 to the 1960s NIST (then
called NBS) in Boulder, CO, USA based their primary time standard on a quartz
oscillator [27].
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During the 1940s, the MKS (meter, kilogramme, second) system [28], employing C.
F. Gauss’ suggestion to use the second as the primary unit for measuring time from
1832 [29] backed up by a so to say international agreement upon the second as the
principal unit of time put forward by the British Association for the Advancement
of Science in 1862 [30], became the de facto international standard for measurement
units. The second was then defined as 1/(24 · 60 · 60) = 1/86400 of a mean solar day,
basing it upon the precession of the earth around its axis.

In 1960, the Eleventh General Conference on Weights and Measures, which estab-
lished the International System of Units [31] ratified a refined version of the second’s
definition using the earth’s revolution around the sun as ‘the fraction 1/31,556,925.9747
of the tropical year for 1900 January 0 at 12 hours ephemeris time’ [32], because it
had been realized that looking at a mean day would be too imprecise and 200 years of
astronomical data were available which allowed for accurate calculations.

Meanwhile, with the advent of quantum physics and one of its fundamental res-
ults [33], namely that energy di↵erences of electronic states in an atom are directly
associated with frequencies by the relation

�E = h⌫, (3.3)

where h is the Planck constant, it became evident very quickly that a vast improvement
in time measurements could be possible. After a theoretical proposal by Isidor Rabi [34],
where he suggested to build a clock based upon magnetic resonance, the first atomic
clock employing ammonia was built in 1949. This clock served as a proof of principle
and a later version with Caesium atoms demonstrated the atomic clock’s superiority
in precision in 1955 [27].

In October 1967 the SI second was redefined [35] as 9, 192, 631, 770 times the
frequency of radiation emitted from the transition between the two hyperfine structure
levels of the ground state of 133Cs with a relative measurement precision of 10�10

at that time. The number was chosen so that the Cs-based second would match
the ephemeral second [36], which it replaced. This definition still holds today. In
1997, it was added that the previous definition ‘refers to a caesium atom at rest at a
temperature of 0 K’ [37], thereby compensating for black-body radiation or external
magnetic fields.

Since then, Caesium clocks have advanced steadily and the most accurate Cs clock
today features a relative precision of 10�16 [38], while other suitable elements started
being used in atomic clocks as well. This includes Rubidium and Hydrogen, where a
comparable precision could be achieved.

The ultimate advancement was brought about by the invention of the frequency
comb and the possibility to use optical transitions in earth alkaline elements for
building an optical atomic clock [39]. A concrete realization was first achieved at the
National Metrology Institute of Japan [40] and featured 87Sr atoms trapped in an
optical lattice [41], which allows for a well controlled motional degree of freedom in

12



3.1 Concept and Implementations

Type Time Frequency Precision
NH

3

1948/49 2.2 · 109 Hz 10�8

133Cs 1960s 9.1 · 109 Hz 10�13

87Rb 2000s 6.8 · 109 Hz 10�15

87Sr 2014 4.2 · 1015 Hz 10�18

Table 3.1: Overview of di↵erent atomic species used for building clock devices. Data
due to [42–45].

the atoms, eliminating all kinds of shifts and noises [42], which will be discussed in
detail below.

Table 3.1 gives an overview of di↵erent atomic clocks based upon Ammonia or
Caesium and finally optical atomic clocks using Strontium.

Time measurements based on atomic clocks have been used in tests of general and
special relativity or particle physics [46–49]. But, the usefulness of these clocks is not
restricted to just fundamental research. For instance, their remarkable precision is
exploited in the Global Positioning System (GPS), which consists of a set of atomic
clocks mounted on satellites [50]. They send signals to small and cheap receivers like
phones, watches or dedicated navigation devices. By measuring the arrival times of
these clock signals the receiver can determine its location with an accuracy of a couple
of meters. Nowadays, almost any travel or logistics e↵ort is carried out with the help
of such navigation instruments, be it on a plane, a ship, in the car or when hiking and
we are not surprised to be guided from the sky anymore.

3.1 Concept and Implementations

As mentioned above, one of the fundamental results of quantum physics is the discovery
that the energies of electrons in atoms are directly associated with frequencies, see
eq. (3.3). In that sense atoms can absorb and emit light at well-defined never changing
frequencies, characteristic of the particular atomic specie used [51].

In early realizations of atomic clocks this insight has led to the construction of
clocks, where a radio source is locked to the radio frequency hyperfine transition of
Caesium atoms propagating in an atomic beam [52]. As a predecessor to the Ramsey
measurement scheme, which sits at the heart of current atomic clocks, these early
clocks relied on the Rabi measurement technique [53]. Thermal atoms would interact
with a probe field when passing through it as a beam and depending on how well the
probe frequency would be in tune with the targeted atomic transition, one could see
more or less inversion in the atomic states from the ground state to the excited state,
which would be detected by counting the inverted atoms or the amount of absorbed
radiation.

Since not long after the initial Rabi-based setups, the atomic resonance has been
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observed by using an interferometric method, the Ramsey measurement technique,
discussed in detail below. In principle, the atoms successively interact with two
microwave pulses as they travel along the beam. By sweeping the microwave frequency
and detecting one of the two hyperfine states downstream, a modulated signal, called
the Ramsey fringe pattern, is obtained. The pattern’s centre, where the microwave
frequency is perfectly in tune with the atomic transition frequency, is determined with
a precision that depends on the fringe spacing, which is inversely proportional to the
time between the two microwave pulses [3].

Our discussion and overview here will focus on atomic clocks that were and are built
at NIST in Boulder, CO, USA. However, let us emphasize that many other research
facilities around the world have also constructed atomic clocks and, most importantly,
have played a key role in the advancement of this setup as well, e.g., in Germany,
France, the United Kingdom, Japan or India [54–58].

In a concrete realization like NBS-1 to NBS-6 and NIST-7 [59] the transition between
F = 3 and F = 4 for mF = 0 in 133Cs is used [60, 61] .The atoms are heated up to
their gas phase in an oven and a beam of atoms at a temperature of roughly 300K
emerges from it. The beam is guided through a magnetic field, where it is split up
into two beams depending on the respective electronic state. One beam is absorbed
by the getter and is of no further interest, while the second beam is deflected into the
microwave interrogation cavity, the so-called Ramsey cavity. Inside this cavity the
Caesium beam interacts with a microwave frequency generated by a Quartz-based
frequency synthesizer. If the microwave frequency is in tune with the atomic resonance,
some of the atoms will have changed their internal state upon leaving the Ramsey
cavity. Now, the beam is exposed to a second magnetic field, which will separate
the atoms that have changed their state from those that did not. One half is again
absorbed and the other half is guided to the detector, which sends a feedback signal
to a servo circuit, that continually tunes the Quartz synthesizer in such a way that
the maximum number of atoms reach the detector. This keeps the oscillator frequency
locked to the Caesium resonance as tightly as possible. The setup is illustrated in
fig. 3.1.

In the last two decades, laser-cooled atoms [62] have replaced the thermal atoms
used in previous clock setups. The interval between the two individual pulses has been
increased considerably and thus, the clock’s precision could be improved by a couple
of orders of magnitude. A prominent example of a clock that employed laser-cooling
in its setup is NIST-F1 [63], a Caesium fountain clock. In this clock, the Caesium
atoms move from below to above the interaction region and then being subject to
gravity fall down again, passing the interaction region a second time. By means of
laser cooling the atoms are slowed down to a few centimetres per second in contrast to
several hundred meters per second in a thermal setup. This allows for a much longer
time interval between the two pulses and thus a more narrow fringe spacing, yielding
a higher precision.

The fountain setup was first suggested by Zacharias in the 1950s [44, 64], yet
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State Selection
Magnets
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Oscillator
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Frequency
Synthesizer
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Magnets
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Clock Signal
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Figure 3.1: Schematic of a beam-based atomic clock. The atoms are heated up
in the oven, those with the desired internal state are directed into
the interrogation region, where they pass through the Ramsey cavity.
Another set of magnets prepares the atoms which have flipped their state
for being counted at the detector (D). In both sets of magnets about
half of the passing atoms are lost and collected by the getter (G). The
servo circuit optimizes the frequency of the cavity, which is generated by
a Quartz oscillator and modulated by the frequency synthesizer so that
the maximum number of atoms will be counted. A clock signal can be
derived from the Quartz oscillator.
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without the availability of su�ciently powerful cooling techniques, first attempts of
an experimental realization did not yield any signal at all. Essentially, all the slow
Caesium atoms were scattered out of the beam by faster ones, that overtook them.

In 1978 Dave Wineland demonstrated the feasibility of laser cooling [65], which had
been proposed three years earlier [66]. In the late 1980s Steven Chu and his team
built the first working fountain clock based upon Sodium [67] and later implemented a
Caesium version of it [68]. The first primary frequency standard employing a Caesium
fountain setup was built at BNM-SYRTE in Paris not long after that [69].

As mentioned, laser cooling constitutes a fundamental prerequisite for a fountain
clock and those clocks usually use a technique called optical molasses [70]. Three
pairs of identical counter-propagating laser beams exert a damping force on the atoms.
The lasers are tuned to a frequency slightly below the atomic resonance and atoms
at the intersection of the six beams can be cooled to a temperature of < 1mK at
timescales of about 100 ms. As if the atoms were moving through a very viscous fluid,
the atoms slow down to a bout 1 cm/s, hence the name ‘molasses’. In that way a large
sample of atoms can be accumulated in one place. In a mechanical picture, atoms
preferentially absorb photons from the laser beam, which they are moving toward, as
a result of the Doppler e↵ect. The absorbed photons carry momentum in the opposite
direction of the atomic motion. When the photon is spontaneously re-emitted with a
random phase and in a random direction, the atom emits slightly more energy than it
absorbed, as the lasers are red-detuned with respect to the atomic transition. This
process is repeated many times (⇠ 107 per second) facilitating a cooling cycle.

In 1998 NIST-F1 [71], that relies on the above concept, was built. In a nutshell,
its measurement procedure can be described as follows. About 108 Caesium atoms
in a volume of about one cubic centimetre are laser-cooled to ⇠ 0.5 µK by an optical
molasses. By detuning the frequency of the lasers in the z-direction the molasses
starts to move upward and at this point shutters extinguishing the laser light make
sure that the sample is no longer subject to any optical interactions during its ballistic
flight. A short microwave pulse drives the internal state of the Caesium to F = 3 and
an optical blast removes any access atoms still in F = 4. Now, the atoms undergo
their first interaction with the microwave cavity, i.e., their first ⇡/2-Ramsey pulse
when they pass through the cavity at about 3 m/s. About 1 m above the resonator the
atoms turn around and fall down due to gravity. They pass through the cavity again
and are subjected to the second ⇡/2-pulse, before they are detected via the probe
laser and an optical transition from F = 4 to F = 5. The apparatus is illustrated in
fig. 3.2.

With this vast increase in interrogation time from a few ten milliseconds to about
one second, relative clock precision reached a level of 4 · 10�16. At this level two
fundamental perturbations seem to hinder a further increase in the clock’s precision:
the black-body shift and a density shift due to collisions of the atoms. In NIST-F2 [72],
the successor of NIST-F1, these issues are accounted for by a cryogenic vacuum source
and the implementation of an idea where not one, but several clouds of Caesium are
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Figure 3.2: Schematic of a Fountain Clock Setup (y-dimension omitted). The atoms
are laser-cooled in an optical molasses, then launched upwards and pass
through the Ramsey cavity before they fall down again due to gravity
and pass through the cavity a second time. They are then optically
detected by a probe laser and a detector.

launched with di↵erent initial velocities, respectively [73].

Figure 3.3 gives an overview of relative atomic clock precision from the first setups
in the 1950s to right before the advent of optical lattice atomic clocks, which will be
discussed below.

For completeness, several review articles and books are available where actual
measurement data is depicted [3, 44, 75].

3.2 Limits of Ultra High Precision Atomic Clocks

At a relative precision of 10�16 tweaking and improving the fountain clock setup
became harder and harder and a new suggestion to use an optical lattice [40] instead of
a thermal beam or ballistic cloud promised new clocks that would feature an accuracy
some orders of magnitude better than the fountain setups.

Two main questions need to be addressed for an optical lattice clock. First, it is
necessary to think about which atomic specie should be used in such a setup. This
requires finding elements with a feasible level structure for trapping, manipulating
and measuring. And secondly, all kinds of perturbations and external shifts need to
be examined and taken into account. This ranges from shifts induced by the trapping
or other external electric or magnetic fields to shifts due to black body radiation, i.e.,
finite temperatures in the setup. A very detailed treatment can be found in [74].
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1950 1960 1970 1980 1990 2000 2010

10�11

10�13

10�15

10�17

NBS-1 NBS-2

NBS-3

NBS-4

NBS-5
NBS-6

NIST-7 NIST-F1

NIST-F2

JILA Lattice

NIST clock precision over time

Figure 3.3: Overview of atomic clock precision at NIST/JILA. Qualitatively, an
almost exponential increase in precision can be observed. (Almost) all
of these clocks have served as primary frequency standards. Data due to
NIST/JILA [59,74].

To begin with, let us discuss, which atomic species feature a level structure that is
most useful in optical lattice clocks. Besides implementations with trapped ions [76–78],
recently, neutral atoms seem to dominate the clock business, as they possess the
advantage of enhanced clock signals even down to the quantum projection noise limit.

While Cs in beam or fountain setups and H in Hydrogen masers have been most
prominent in atomic clocks for the last decades their ‘relatively small’ microwave
transition frequencies between ground and excited state of roughly 9.2GHz and
1.42GHz, respectively, ultimately hinder a further improvement of Caesium based
clocks. Hence, the suggestion to use alkaline earth(-like) atoms that possess two
valence electrons was made [79]. With two electrons in the outermost s-orbital their
respective spins can add up parallel or anti-parallel, which results in singlet and triplet
states. There are strong transitions within the singlet and triplet manifolds and a lot
weaker ones between them. The 1S

0

!1 P
1

cycling transition can be used for trapping,
cooling and state detection. Cooling can be enhanced by employing the 1S

0

!3 P
1

spin-forbidden transition. And further transitions from 3P to 3S
1

or the 3D manifold
aid in repumping the cooling transition or in optical pumping for state detection.
The most interesting transition in these atoms, however, is without a doubt, the
doubly-forbidden 1S

0

!3 P
0

transition, oftentimes dubbed ‘clock transition’, present
in isotopes with nuclear spin. On the one hand, this transition features a frequency in
the laser-accessible optical regime in the order of 100 THz and a very narrow linewidth
of well below 1 Hz and on the other hand, there is no electronic angular momentum,
which reduces the magnitude of many perturbations in the clock setup. In that sense,
these species seem ideal for clocks, which is further underpinned by the existence of
di↵erential light shift free trapping wavelengths, the so-called ‘magic wavelengths’ and
because of the minute dependence of the clock frequency on the light polarization. The
level structure with a particular attention to 87Sr is shown in fig. 3.4 and a detailed
listing of all the transitions with their properties is given in tbl. 3.2.

18



3.2 Limits of Ultra High Precision Atomic Clocks

1S0

1P1

3S1

3P0

3P1

3P2

3D3

3D2

3D1

b

a

c

d e

f

Figure 3.4: Simplified level structure of 87Sr. In the outer-most orbitals various
transitions are involved in cooling and trapping the atoms. The transition
1S

0

!3 P
0

(c) is the actual clock transition. For details see tbl. 3.2.

Type Levels Transition Linewidth
a strong cooling 1S

0

!1 P
1

460.9 nm 32MHz
b narrow cooling 1S

0

!3 P
1

689.3 nm 7.5 KHz
c clock 1S

0

!3 P
0

698.4 nm 1 mHz
d repump 3S

1

!3 P
2

707.2 nm
e repump 3S

1

!3 P
0

679.3 nm
f repump 3P

0

!3 D
1

2603 nm

Table 3.2: Transitions present in the outermost s-orbitals of 87Sr that are used in an
optical atomic clock. Data due to [74].
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Before we go on to discuss the various systematic e↵ects in the clock setups, let
us briefly touch on the idea of a magic wavelength. Optical lattices confine atoms
by inducing a dipole moment in them and then exerting a force on this dipole by a
laser field gradient. Generally, the induced polarizabilities will vary for di↵erent states,
so that the lattice will induce an AC Stark shift in the levels constituting the clock
transition, which is detrimental to the clock’s accuracy. Additionally, as the light field
is inhomogeneous, atomic motion within the trap will result in a coupling of external
and internal degrees of freedom, compromising coherence for spectroscopy. Of course,
the Stark shifts of each individual level depend on the trapping wavelength and the
polarization of the trap lasers. For some transitions it is however possible to find a
trapping configuration so that the polarizability of the lower and upper clock state is
equal, resulting in a net Stark shift of zero as well as a clear separation of motional
and electronic degrees of freedom. This idea was first suggested by Katori in 2003 [80].

Without going into too much detail, let us present a short calculation of the lattice-
induced AC Stark shift following [81]. In a one-dimensional optical lattice the lattice
potential can be expressed as a longitudinal standing wave with a Gaussian distribution
along the radial axis, i.e.

U (r, z) =
4P↵

(⇡c✏
0

w(z))2
exp

✓ �2r2

w(z)2

◆
cos (kLz) (3.4)

with P the average laser power, w(z) the laser waist along the propagation direction,
kL its wave number and ↵ the polarizability of the state under consideration given by

↵ = 6⇡✏
0

c3

X
j

�j,�

�!2

j

⇣
�!2

j � !2

L

⌘ , (3.5)

where we sum over all states with non-vanishing transitional dipole moments. �j,� is
the spontaneous emission rate of the respective target states when exposed to light of
polarization �. �!j is the transition frequency between the considered and the target
state and !L is the laser frequency. Now knowing the potential, we can calculate the
electric field and obtain the scalar AC Stark shift

�! = �
↵
��� ~E���2
2~ . (3.6)

In our considerations, where we deal with 87Sr, a di↵erential light shift of zero
between the two clock states 1S

0

and 3P
0

is achieved at a ‘magic’ trapping wavelength
of �m = 813.428 nm [40,82].

Now, let us discuss some systematic e↵ects that need to be taken into account in
an optical lattice clock. We largely follow [74].

To begin with, we realize that the Stark shift polarizable neutral atoms experience
in the laser field of the optical trap, in fact, has three contributions: a scalar, a
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vector and a tensor part. Since we are dealing with J = 0 ground states for the clock
transition, the scalar contribution dominates and a typical shift would be on the order
of 1MHz. Yet this shift is cancelled by the use of a magic wavelength lattice, as
discussed above. This shift is fairly insensitive to the actual trapping frequency and
as long as the lattice trap frequency is within about 500 kHz of the magic wavelength,
a cancellation of the shift with the consequence of a fractional frequency precision
at the order of 10�18 is possible. Now, the fact that the clock states do not have an
identical zero angular momentum due to state mixing from hyperfine interactions,
does not allow for the vector and tensor contribution of the polarizability of the upper
clock state to the Stark shift to vanish as well [83]. This shift can reach magnitudes
of the order of 100 Hz [84], but in practise, the use of mostly linearly polarized light
reduces the e↵ect of the vector shift to a level, where it does not play any role in
current 1D and 2D setups. The tensor contribution could be shown to influence the
clock precision at the 10�16 level, yet can be straight-forwardly controlled to reduce
its e↵ect below the 10�17 regime [84]. Another systematic perturbation is brought
about by the hyper-polarizability of the clock states, where its corresponding shift
scales with E4 as opposed to E2. Hyper-polarizability includes one and two photon
resonances [85] and it remains finite at the magic wavelength [86] resulting in a shift
of about 10�17 in fractional frequency with an uncertainty well below that [84, 87].
Besides these dipole-based e↵ects, higher order electric quadrupole or octopole shifts
as well as magnetic shifts have been studied [88]. For the JILA Sr clock it could be
shown that a purely linear intensity-dependent model allows for a characterization of
the shifts below the 10�18 level [42].

Not only electric fields will cause a shift of the clock transition frequency, but
magnetic fields can result in a Zeeman shift of the levels as well. In an optical lattice
clock, both first and second order Zeeman shifts need to be taken into account. In
fermionic Strontium the nuclear spin I will introduce 2I + 1 magnetic sub-levels in the
J = 0 clock states facilitating a Zeeman shift with linear dependence on the magnetic
field. The challenge here is to accurately measure and calculate the di↵erential
g-factors of the clock states in order to correct this shift [83, 89–93]. A precise
measurement places this di↵erential g-factor at �gµB/~ = �11084Hz/µT with the
Bohr magneton µB [83]. In addition, a second-order Zeeman shift arising from levels
separated in energy by the fine structure splitting of about �2.33 · 10�5B2 Hz/µT2 is
present [83, 88,94,95].

Another source of imprecision is given by black-body radiation that causes shifts
on the atomic levels. The static and dynamic polarizability as well as the radiative
temperature of the environment of the atoms are to be held accountable. At the value
of 2.7 · 10�15 for room temperature the black-body frequency shift constitutes the
largest uncancelled systematic shift of the clock transition frequency. The uncertainty
of this shift, however, is the actual problem. Expensive ab initio calculations [96]
have brought this uncertainty down to 1% for Sr and direct measurements of the
polarizability have contributed as well [97–99]. Recent coupled-cluster all-order
calculations have demonstrated a good agreement with these measurements [100, 101].
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Dynamic corrections to the static polarizability of the clock states need to be taken into
account as well, where the 3P

0

state experiences the most significant correction, which
is dominated by its coupling to the 3D

1

state. A recent measurement [102] allowed
to reduce this uncertainty to below the 1% level and the mentioned new theoretical
considerations are in good agreement with this value [100, 101]. The third cause of
uncertainty in the black-body shift stems from the radiative environment bathing the
atoms, i.e., temperature inhomogeneities, the optical and infrared transparency of
viewports, complex geometries and non-uniform emissivities of the vacuum apparatus.
This leads to an uncertainty of 7 · 10�17. Cryogenic environments can be used to drive
this down to the 10�18 regime, given the T 4 dependence of this e↵ect [103]. In the last
years in situ thermal probes have been used to monitor the radiative thermal bath
resulting in an uncertainty below 2 · 10�18 [42, 102].

In contrast to beam or fountain clocks (see sec. 3.1), where shifts induced by high
densities and consequent collisions play a major role [68,75,104–106], optical lattice
clocks are usually subject to much less atomic interactions. In 3D lattices, which
typically feature a filling factor of less than one,, with the exception of tunnelling,
collisions are virtually non-existent. Rather, long-range dipole-dipole interactions,
which are the main subject of this thesis, start to play a role [107] given a su�cient
clock precision. In 1D lattices, where sites are multiply occupied, the situation
is very di↵erent, though. Even in fermionic 87Sr, where the anti-symmetric wave
function eliminates collisions from even partial wave collision channels (including
lowest order s-wave) and lowest order odd p-wave collisions can be suppressed well,
collisions have been observed [95, 108]. This seems to be the case due to the fact that
finite temperatures in the atomic ensemble prohibit a full suppression of the p-wave
collisions and the fact, that indistinguishable fermions evolved into non-identical
superpositions of clock states during spectroscopy, allowing for s-wave interactions.
A large body of theoretical [109–112] and experimental [108,113–117] investigations
of this phenomenon has been published and numerous techniques for cancellation or
suppression of scattering are available [86,115,116,118]. Currently, the uncertainty
caused by collisions can be controlled at the level of 10�18 [42, 117].

As the di↵erential light shift is zero for the trapping laser only, Stark shifts induced
by the probe laser due to o↵-resonant couplings to intermediate states will occur in
the system. This depends on the clock states’ polarizability at the clock frequency
and the laser power used to detect the clock transition. The e↵ect resides at the order
of 10�17 [82, 95, 119, 120], with new measurements placing it even below 10�18 [42].
With increasing laser coherence times it is possible to reduce the laser power required
for detection, which also reduces this e↵ect.

Doppler and recoil frequency shifts can usually be well avoided in optical lattices.
However, there are some mechanisms that still lead to atomic motion. Tunnelling
of the atoms between lattice sites is still possible, especially in shallow lattices [121],
where tunnelling along the interrogation axis poses a problem. This can be hindered
by aligning the interrogation axis along gravity, which lifts the degeneracy among
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lattice sites and reduces the overall e↵ect to the order of 10�17. Relative vibrations
between the lattice and clock lasers can cause residual Doppler shifts as well, which
can be avoided by actively phase-stabilizing the clock and/or lattice lasers [122] or
detection in two counter-propagating directions. Switching RF power in an acousto-
optic modulator [123] for turning the interrogation of the clock laser on and o↵ results
in residual Doppler e↵ects caused by phase chirps from RF ringing and thermal
e↵ects [124], which need to be characterized and controlled very well or actively
stabilized [125]. Additionally, a relativistic Doppler shift due to thermal motion of the
atoms is present as well, yet influences the clock’s precision below the order of 10�20.

Similar to the AC Stark shifts, static electric fields can introduce static DC Stark
shifts. In optical lattices the atoms are usually far removed from surfaces, where stray
charges may accumulate. Metallic components in the system are usually grounded,
yet charge can built up on insulator surfaces, which influence the clock precision at
the 10�17 level with some reports of exceptions, where a charge build-up lead to an
e↵ect on the order of 10�13 [126]. In recent experiments the DC Stark shift’s e↵ect
could be reduced to about 2.1 · 10�18 [42].

Finally, a number of other minor systematic e↵ects have been looked into. These
include line pulling, servo error, stray laser Stark shifts, AC Zeeman shifts among
others [40, 42, 82, 94, 95, 120], which at current measurement precision do not pose
fundamental limits.

3.3 Ramsey Measurement Procedure

Let us now discuss the Ramsey measurement technique first used in 1949 [64], that
constitutes the core of an atomic clock setup, in more detail. We loosely follow [3].

In analogy to a Mach-Zehnder interferometer in classical optics [127], where an
interference pattern is obtained by splitting up a beam into two sub-beams, manip-
ulating each in a di↵erent way and then bringing them back together again, the
Ramsey procedure can be understood as a time-based interferometer in quantum
optics. Instead of di↵erent optical path lengths caused by an intrinsic time delay or
actually di↵erent real space paths, two atomic states and their coherent superposition
will serve as the basis for our interferometric procedure.

To be more precise, the Ramsey technique employs two consecutive ⇡/2 Rabi pulses.
The first pulse R

1

creates a coherent superposition of the two atomic states. Then, a
tunable phase shift is acquired by the atomic coherence, before it is probed by the
second pulse R

2

.

For a system initially in the state |gi, the first pulse will create a coherent super-
position of ground and excited state, i.e.

R
1

|gi =
1p
2

(|gi + |ei) . (3.7)
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In the rotating frame, through a di↵erence � = !
0

�!l between the atomic transition
frequency !

0

and the probe field !l, a phase shift of ' = �⌧ with probing time ⌧
can be imprinted on the excited state (neglecting an irrelevant global phase). This
is achieved by either detuning the probe field, i.e., the probe laser, or applying a
transient electric or magnetic field to shift the atomic transition frequency. Our atomic
state now reads

1p
2

(|gi + exp (i') |ei) (3.8)

and upon applying the second Ramsey pulse R
2

we get

1

2
[(1 � exp (i')) |gi + (1 + exp (i')) |ei] (3.9)

and the probability for finding the atom in |ei or |gi after the probing sequence is
given by

P|ei =
1

2
(1 + cos (')) P|gi =

1

2
(1 � cos (')) , (3.10)

a result that is identical to the output signals at the two arms of a Mach-Zehnder
device.

The interpretation of this result is straight-forward: for ' = 0, where there is no
evolution of the atomic coherence between the two pulses, they will simply add their
e↵ects and two ⇡/2 pulses will result in one e↵ective ⇡ pulse, flipping the atomic state
from |gi to |ei. For ' = ⇡, R

2

will undo the e↵ect of the first pulse and the atom will
come back to |gi.

These oscillations in the detection probabilities can also be understood as an atomic
interferometer. The transition from |gi to |ei by absorption of photons from the
probe beam may either occur during R

1

or R
2

, two indistinguishable quantum paths,
that will lead the atom from the initial to its final state. Thus, the corresponding
amplitudes must be summed to obtain the final transition probability and the Ramsey
fringes demonstrate the interference between these amplitudes.

The Ramsey interference is a very sensitive probe of any phase disturbance acting
on the system between the two pulses. If an external perturbation produces an extra
phase shift of the atomic coherence between R

1

and R
2

the Ramsey fringes are shifted
accordingly and ' becomes '+'0, where '0 is an additional phase shift due to external
circumstances.

For a practical implementation it is much more convenient to introduce a relative
phase between the pulses R

1

and R
2

, instead of tuning the phase of the atomic
coherence between the two pulses. Again in the rotating frame, it is much easier to
use one field source for both pulses R

1

and R
2

instead of two separate fields. The
relative phase can then be adjusted by tuning the probe field !l relative to !

0

, as
mentioned above.

The atom will undergo two interactions with the probe field, one from ti to t = 0
and one from t = ⌧ to tf . We assume |ti| , |tf � ⌧ | ⌧ ⌧ , i.e., that the duration of the
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pulses R
1

and R
2

is much shorter than the time of free evolution between the two
pulses, a reasonable approximation for most measurement schemes. The Hamiltonian
corresponding to this process with respect to the atomic transition frequency is then

H =
i⌦

2
⇥ (t)

�
exp (i�t)�+ � exp (�i�t)��� , (3.11)

where ⇥ (t) = 1 during the pulses and ⇥ (t) = 0 otherwise.

Realizing that the spectral width (inverse pulse duration) of the two probe pulses is
much smaller than �, we can neglect the phase e↵ects of the pulses and set the phase
of the first pulse to ' = 0 and the phase of the second pulse to ' = �⌧ = (!

0

� !l) ⌧ .
From this, we recover the Ramsey fringe signal as

P|ei =
1

2
(1 + cos (�⌧)) . (3.12)

When the probe frequency !l is swept, the spacing of the Ramsey fringes is given by
1/⌧ . The spectroscopic resolution of the Ramsey interferometer is thus proportional
to the total interrogation time, not the duration of the actual probing pulses.

These features underpin the importance of the Ramsey interferometry procedure
for high resolution spectroscopy experiments. During most of the interrogation time
the atom can be shielded from the outside world and from the action of the probe
field e�ciently, thereby minimizing light shifts and power broadening. Most modern
atomic clocks are based upon Ramsey interferometry.

Figure 3.6 demonstrates the fringe spacing, so to say the resolution of the spectro-
scopic procedure, for di↵erent interrogation times ⌧ . The longer the period of free
evolution in between the probing pulses, the closer the fringes are to each other. This
favours precision in the experiment as smaller changes in � have a much larger e↵ect
on the signal and therefore can be measured more easily.

More formally, this idea is captured by the definition of the signal sensitivity, which
gives a means for quantifying the smallest change in �, that can be resolved by a
given setup and reads

�� = min
�

��z

|@
�

h�zi| , (3.13)

where we have chosen h�zi as our signal and ��z denotes its rms deviation. Heurist-
ically, this formula results from a simple slope triangle deliberation as illustrated in
fig. 3.7. As said, the smaller ��, the better the resolution of the measurement when
sweeping �. So, a small rms deviation ��z and an as large as possible slope |@

�

h�zi|
will return the best measurement results.

In a perfect experiment, where there is no dissipation (discussed in detail in chp. 4)
with a signal h�zi = cos (�⌧) the expression for the sensitivity will become

�� = min
�

cos (�⌧)

|⌧ sin (�⌧)| =
1

⌧
(3.14)
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|gi

' D D'

R1 R2

xt

Figure 3.5: Illustration of the Ramsey interferometry procedure. In comparison to
a Mach-Zehnder interferometer in classical optics (right). In a Ramsey
procedure (left) the interference fringes are created by a phase imprinted
on the coherence between |gi and |ei, while in a classical interferometric
experiment the interference pattern stems from combining the two split
up fields of di↵erent optical path lengths again before detection.
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Figure 3.6: Ramsey fringes for di↵erent interrogation times ⌧ . The longer the probing
time, the closer the fringe spacing, which increases the discernibility or
resolution of the individual fringes.

and we see that the longer the interrogation time, the smaller a di↵erence in � we
can resolve, which agrees with our qualitative discussion from above.
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Figure 3.7: Illustration of the meaning of the signal sensitivity ��. The solid blue
curve depicts the signal h�zi, while the two dashed curves illustrate the
signal boundaries in the sense of its rms deviation. At any chosen point
the sensitivity can be extracted from the slope triangle between the
signal curve and signal plus/minus its rms deviation.
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4 Spontaneous Emission

With our focus on measuring the frequency di↵erence between two electronic states
most precisely, it is very clear that the spontaneous decay of an electronic excitation
within the atom constitutes a fundamental limitation to our spectroscopy procedure,
which crucially relies on bringing as many atoms as possible into the excited state.
When this is hindered by spontaneous, in that sense uncontrollable and unpredictable,
emission from the atoms, our setup su↵ers from reduced accuracy and reproducibility.

4.1 Phenomenon and Concept

Spontaneous emission occurs when a quantum system like an atom, molecule, quantum
dot, NV centre, etc., modelled by its two relevant states, moves from an excited state
|ei to a state of lower energy, the ground state |gi, and thereby emits a photon with
the angular frequency ! = (Ee � Eg) /~, satisfying energy conservation. This photon
is of unknown polarization and will propagate in a random direction as shown in
fig. 4.1.

But why does such a two-level system decay after all? Based upon simple quantum
mechanical considerations, we would argue that the excited state |ei is an eigenstate
of the system and thus it’s time evolution is simply given by

|e(t)i = exp(�i!et) |ei , (4.1)

only acquiring a (global) phase and thus Pe(t) = 1 for all times. This definitely does
not explain the phenomenon of spontaneous decay.

In order to understand spontaneous emission, we need to look at a larger Hilbert
space than just the one of our two-level system. Quantum Electrodynamics does this
by including the free radiation field and its inherent interaction with the atomic states.
As any atom is inevitably coupled to all vacuum modes of the radiation field, i.e.,
to photonic modes of any wave vector ~k and both polarizations �, probabilities of
the joint system to shift excitations from the atom to the field become finite. Now,
when observing the reduced atomic system only, a transfer of energy from the atom to
the field will appear as loss of energy or dissipation from the atomic system, thereby
clarifying the meaning of spontaneous emission.

A first phenomenological treatment of these processes has been proposed by Einstein
in 1916 [128,129], which resulted in the postulation of the then undetermined Einstein
A- and B-coe�cients.
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4 Spontaneous Emission

Einstein realized that in radiative equilibrium there are three processes that are
responsible for energy exchange between particles, e.g., atoms, and the radiation field.
Those processes were famously dubbed

1. Absorption: by absorbing a photon from the radiation field an electron in an
atom is lifted into a higher energy state |ei.

2. Stimulated (or Induced) Emission: a mode populated by n photons stimulates
the emission of another photon into that very same mode, i.e., same direction
and polarization, while the atomic electron transitions into a lower state |gi

3. Spontaneous Emission: the atom spontaneously emits a photon into an empty
mode and transitions to a lower energy state |gi. Particularly in free space that
means that the direction of the emitted photon is random.

With this, we recognize that all three processes depend on the number of atoms in the
respective states, Ng and Ne and absorption and stimulated emission also incorporate
the spectral energy density ⇢ (!) of the surrounding radiation field. Einstein introduced
the coe�cients Aeg, Beg and Bge (called A

21

, etc. in his original work). Thus, the
processes can be quantified by the probabilities of

1. absorption of a photon from the field Ng · Bge · ⇢ (!)

2. stimulated emission into a certain mode Ne · Beg · ⇢ (!)

3. spontaneous emission into an arbitrary mode Ne · Aeg.

The rate equation for the number of atoms in the ground state |gi and the excited
state |ei reads

Ṅg = �Ṅe = �Ng · Bge · ⇢ (!) + Ne · Beg · ⇢ (!) + Ne · Aeg, (4.2)

which in thermal equilibrium is equal to zero and it follows

Ne

Ng
=

Bge⇢ (!)

Aeg + Beg⇢ (!)
. (4.3)

The relation between the states’ occupation and their respective energies is given
by the Boltzmann distribution,

Ne

Ng
=

ge

gg
· exp (�Ee/kBT )

exp (�Eg/kBT )
=

ge

gg
exp (��E/kBT ) , (4.4)

where ge and gg quantify the degree of degeneracy of the states |gi and |ei, Ee and Eg

with �E = Ee � Eg denote their respective energies, kB is the Boltzmann constant
and T represents the temperature. Solving for the spectral energy densities leaves us
with

⇢ (!) =
Aeg

Beg
· 1

g
g

B
ge

g
e

B
eg

exp (�E/kBT ) � 1
, (4.5)
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|ei

|gi

~!

Figure 4.1: Spontaneous emission. A two-level quantum system decays from the
excited state |ei to the ground state |gi and emits a photon of the energy
~! = Ee � Eg with random polarization into a random direction.

which by comparison of coe�cients to Planck’s law of radiation or the Rayleigh-Jeans
law [130] results in the following relations between the Einstein coe�cients,

gg · Bge = ge · Beg, (4.6a)

Beg = Aeg · �3

8⇡h
, (4.6b)

where h is the Planck constant and � = 2⇡!/c is the wavelength of the transition.

In this derivation the actual expression for the Einstein coe�cients cannot be
determined, such that they remain an abstract quantifier for absorption and emission
probabilities, which solely depend on the chosen atomic specie and transition. The A-
and B-coe�cients are independent from temperature as the temperature dependence
of the radiation is usually caused by di↵erent occupation probabilities Ne and Ng and
is accounted for by the Boltzmann distribution.

We will now concentrate on the process of spontaneous emission, while both stimu-
lated emission and absorption would be fairly similar to deal with.

The advent of quantum electrodynamics allowed for a more rigorous approach.
Based upon the insight that the electromagnetic radiation field is quantized and
the creation and annihilation of single electromagnetic quanta of energy, the so-
called photons, is possible, a refined mathematical treatment of spontaneous emission
emerged. Additionally, those photonic modes will su↵er from random fluctuations,
which are ultimately responsible for spontaneous emission as well as many other e↵ects
(e.g., the Casimir e↵ect [131]).

In the following, we will derive the QED result for the rate of spontaneous emission
from a single two-level system, before we extend our deliberations to an ensemble
of two-level systems. Lastly, we will observe that, when more than one emitter is
present, the emitted light from an extended system can interfere constructively and
destructively depending on the system’s geometry, which will lead us to super- and
subradiance.
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4.2 Single Atom

We will now derive the spontaneous emission rate from a dipole-facilitated transition
between two electronic levels in an atom, following [132]. In second quantization the
Hamiltonian describing the joint systems of a two-level atom and the free radiation
field can be written as

H = H
A

+ H
F

+ H
int

, (4.7)

where
HA = !�+�� and HF =

X
~k,�

!ka
†
~k,�

a~k,�
(4.8)

describing the bare energies of the atom and the radiation field, where !k = c
���~k���,

while
H

int

= �~d · ~E (~r) (4.9)

denotes the interaction of the field with the atom treated in dipole approximation.

Now, substituting for the dipole and field operators of eq. (4.9) we end up with the
fully quantized interaction

H
int

= i
X
~k,�

g~k,�

h
a~k,�

exp
⇣
i~k~r
⌘

� a†
~k,�

exp
⇣
�i~k~r

⌘i �
�+ + ��� (4.10)

with the mode function g~k,�
=
p
!k/2✏

0

V ~e~k,�
· ~µ, where ~e~k,�

is the polarization vector

and the dipole matrix element ~µ =
D
e
���~d���gE is assumed real without loss of generality.

V denotes the quantization volume.

Let us now expand and set ~r to be the position of the atom as the centre of mass,
since the phase factor i~k~r will vanish later on anyway. We obtain

H
int

= i
X
~k,�

g~k,�

⇣
a~k,�

�+ + a~k,�
�� � a†

~k,�
�+ � a†

~k,�
��
⌘

, (4.11)

where we have four distinct terms that characterize the possible interactions between
the radiation field and our two-level atom. The first and the last term correspond to
absorption and emission, respectively, where the energy of the combined system is
conserved. The second and third term, however, denote processes where the initial
state does not have the same energy as the final state as illustrated in fig 4.2 and we
will therefore neglect them in the fashion of the rotating wave approximation.

Thus, we end up with an e↵ective coupling between the atom and the radiation
field that reads

H
int

= i
X
~k,�

g~k,�

⇣
a~k,�

�+ � a†
~k,�
��
⌘

. (4.12)

With this proper interaction Hamiltonian we can now write down Fermi’s Golden
Rule [133], that allows for calculating transition rates between states in a first order
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Figure 4.2: Processes involved In dipole-approximation there are four processes that
can occur, when a two-level atom interacts with a field. Two of them
are energy-conserving and are kept in the rotating wave approximation,
while the other two are dropped, as discussed in the text.

time-dependent perturbation theory manner. The transition rate is proportional to
the transition probability between an initial state |ii and all possible final states |f~k,�

i
that are coupled by our interaction and reads

� = 2⇡
X
~k,�

���Df~k,�

���H
int

���iE���2 � (!i � !f ) . (4.13)

As we aim to study emission from the atom the initial state will be |ii = |ei ⌦ |n~k,�
i

and the final state, where the atom has lost its excitation to the creation of a photon
will be |fi = |gi ⌦ |(n + 1)~k,�

i. The only non-vanishing contribution to the matrix
element will therefore beD

f~k,�

���H
int

���iE = � i
X
~k0,�0

g~k0,�0

D
f~k,�

���a†
~k0,�0�

�
���iE

= � ig~k,�

q
n~k,�

+ 1.

(4.14)

Inserting that result back into eq. (4.13) we find

� = 2⇡
X
~k,�

!k

2✏
0

V

���~e~k,�
· ~µ
���2 ⇣n~k,�

+ 1
⌘
� (!i � !f ) , (4.15)

where !i = !
0

+n~k,�
!k and !f =

⇣
n~k,�

+ 1
⌘
!k, so !i �!f = !

0

�!k ensuring energy

conservation.

We now identify two distinct contributions to the emission rate: one that is linear
in the number of photons n~k,�

present in a particular mode and a term independent
of n~k,�

. The first term corresponds to stimulated emission, where the emitted photons
matches the surrounding photons in wave vector and polarization. The second term
describes the process of spontaneous emission, which allows for the emerging photon
to assume any wave vector and polarization. As we are interested in the rate of this
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spontaneous emission only, we will now set n~k,�
= 0, e↵ectively choosing the vacuum

mode |0~k,�
i for our initial state.

Next, we need to find a way to sum over all possible wave vectors ~k and both
polarizations �. By calculating the mode volume in reciprocal space to be (2⇡)3/V
and the argument that our quantization volume is much larger than any other involved
length scale, we can replace the above sum by the following integral

� =2⇡
V

(2⇡)3

X
�

Z
d3k

!k

2✏
0

V

���~e~k,�
· ~µ
���2 � (!

0

� !k)

=
1

8⇡2✏
0

X
�

Z
dk k2

Z
d✓ sin ✓

Z
d'
���~e~k,�

· ~µ
���2 � (!

0

� !k)

=
1

8⇡2✏
0

c3

X
�

Z
d!k !

2

k

Z
d✓ sin ✓

Z
d'
���~e~k,�

· ~µ
���2 � (!

0

� !k)

=
!3

0

8⇡2✏
0

c3

X
�

Z
d✓ sin ✓

Z
d'
���~e~k,�

· ~µ
���2

(4.16)

Lastly, it remains to resolve the sum involving the polarizations. To do this, we
consider our dipole ~µ to be oriented along the z-axis and formulate the direction
of the wave vector ~k to be (sin ✓ cos', sin ✓ sin', cos ✓). Now, we can always rotate
our coordinate system about its tangential angle ' in such a way that ~µ and ~k will
have an overlap of cos ✓. For the two polarization vectors it holds, that they must
be orthogonal to ~k, i.e., e~k,�

· ~k = 0 and to each other, e~k,�
· e~k,�0 = ���0 . There is an

additional degree of freedom involved, namely the choice of how the two polarization
vectors are rotated about ~k in the plane that is spanned by them. Thus, we can rotate
the polarizations so that one of them lies in the plane spanned by ~µ and ~k and the
other one is oriented perpendicularly to that plane. This will yield scalar products of
µ · e~k,1

= sin ✓ and µ · e~k,2
= 0. For a more visual impression these deliberations are

illustrated in fig. 4.3. We have

� =
!3

0

8⇡2✏
0

c3

Z
d✓ sin ✓

Z
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=
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Z
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8⇡

3
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µ2

3⇡✏
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c3
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(4.17)

Having retrieved the known Wigner-Weisskopf literature result [134] of the spontan-
eous emission rate �, let us finally emphasize its cubic dependence on the transition
frequency !

0

and its quadratic scaling with the atomic transition dipole µ. In the
following we will discuss atomic clock transitions that are not necessarily dipole facil-
itated transitions, but the general principle for deriving the spontaneous emission rate
would be largely similar for quadropole or octopole transitions.
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e
�

k,1~µ
~k✓

z

x
Figure 4.3: Angles between ~k and ~µ. This figure visualizes the resolution of the

polarization sum of eq. (4.16).

4.3 Ensemble of Emitters

Let us now turn to an ensemble of two-level emitters coupled to the quantized free
vacuum and investigate the modifications to the individual single-atom decay rates and
emerging collective energy shifts. Again, we will do this in the framework of second
quantization. We assume N identical point-like two-level systems with a transition
frequency of !

0

, which are placed inside a fixed geometry given by the position vectors
{~ri}N

i=1

. The emitters are assumed to remain at their position at any time, e↵ectively
neglecting atomic motion or collisions. This scenario can be realized almost perfectly
in an experiment, where atoms or molecules are loaded into a well-engineered optical
lattice and driven to the so-called Mott insulator state [135].

Our approach here follows the original work by Lehmberg in 1970 [136, 137] and
is largely based upon the derivation provided in ref. [138]. Again we depart from a
Hamiltonian of the form

H = H
A

+ H
F

+ H
int

, (4.18)

where

H
A

=!
0

NX
i=1

�+

i �
�
i , (4.19a)

H
F

=
X
~k,�

!k a†
~k,�

a~k,�
, (4.19b)

H
int

= �
NX

i=1

~di · ~E (~ri) . (4.19c)

We rewrite the interaction Hamiltonian in second quantized form to obtain

H
int

= i
NX

i=1

X
~k,�

g~k,�

h
a~k,�

exp
⇣
i~k~ri

⌘
� h.c.

i �
�+

i + ��
i

�
(4.20)

with g~k,�
=
p
!k/2✏

0

V ~e~k,�
· ~µ where we assume an equal orientation and amplitude

for the atomic transition dipoles ~µi = ~µ. From that we obtain the equation of motion
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4 Spontaneous Emission

for the field operators by writing down their corresponding Heisenberg equation, i.e.

@t a~k,�
= i
h
H, a~k,�

i
= �i!ka~k,�

� g~k,�

NX
i=1

exp
⇣
�i~k~ri

⌘ �
�+

i + ��
i

�
, (4.21)

which can be solved by means of a retarded Green function and yields

a~k,�
(t) =a~k,�

(t
0

) exp (�i!k (t � t
0

))

�
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dt0 exp
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�
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��
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NX
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⌘
�x

i

�
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� (4.22)

with, of course, �x
i = �+

i + ��
i . Now, we can put down the equation of motion for any

atomic operator O as

@t O =i [H, O] = i!
0

NX
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⌘
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(4.23)

where we have split up the electric field to introduce normal ordering for the ladder
operators, i.e., a~k,�

to the left and a†
~k,�

to the right. We can now make use of eq. (4.22)

and obtain

@t O =i!
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(4.24)
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with ~rij := ~ri � ~rj being the distance between the positions of atoms i and j. Now,

let us replace the sum over the modes ~k,� by an integral over the entire mode space,
similar to what we did for a single atom in sec. 4.2, i.e.,

P
~k,�

! V/(2⇡)3
R

d3k.

Furthermore, we will use the fact that ~k ? e~k,1
? e~k,2

and thus

X
�

���~µ · e~k,�

���2 = µ2

⇣
1 � �e~µ · e~k

�
2

⌘
, (4.25)

where we define the unit vectors e~µ = ~µ/µ and e~k = ~k/k, and continue abbreviating
the contribution from the incident field by E

in

(t),
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(4.26)

Next, we neglect the retardation and perform the Markov approximation [139] by
substituting

�x
j

�
t0
�! �+

j (t) exp
�
i!

0

�
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, (4.27)

which leads us to
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(4.28)
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Now, we integrate over the solid angle (cf. below) and applying the rotating wave
approximation neglect fast oscillating terms, so that
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(4.29)

where we have implicitly defined

F (kr) :=
3

2

Z
⌦
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4⇡

⇣
1 � �e~µ · e~k
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2

⌘
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⌘
. (4.30)

From this we can now abbreviate the quantities corresponding to collective energy
shifts and emission rates as

�ij =�F (k
0

rij) (4.31)

⌦±
ij =

�
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0

P
Z 1

0
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k3F (krij)

k ± k
0

, (4.32)

where we have anticipated the result for �ij upon integration with � (k � k
0

), while
the integration with � (k + k

0

) will yield zero. Now, our equation of motion simplifies
drastically and reads
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(4.33)

Finally, we drop fast oscillating terms like �+

i �
+

j and ��
i �

�
j when resolving �x =
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�+ + �� and we get
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(4.34)

and by collecting terms we obtain the final form of our equation, which is often referred
to as a ‘Quantum Langevin equation’, i.e.
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(4.35)

At this point we go back to the Schrödinger picture and put down the equation of
motion for our density operator ⇢ describing the (mixed) state of our system and we
end up with the ‘Optical Bloch equations’

@t⇢ = i [⇢, H] + L [⇢] (4.36)

where the first part containing the Hamiltonian

H =
X

i

!
0

�+

i �
�
i +

X
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⌦ij �
�
i �

+

j (4.37)

describes the coherent energy-conserving part of the interaction, while the second part,
often referred to as ‘Liouvillian super-operator’,

L [⇢] =
1

2

X
i,j

�ij

⇣
2��

i ⇢�
+

j � �+

i �
�
j ⇢� ⇢�+

i �
�
j

⌘
(4.38)

accounts for the dissipation from the system into its environment. Its first term, the
so-called recycling term ensures that the overall population in the system remains
constant by shu✏ing population that is reduced in higher energy states to those with
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4 Spontaneous Emission

a lower energy, while the second and third term decrease the population in higher
energy states. In this form the equation is also dubbed ‘master equation’. The two
geometry-dependent model parameters �ij and ⌦ij can be written compactly as

⌦ij = �G (k
0

rij) �ij = �F (k
0

rij) (4.39)

with

G (⇠) = � 3

4

�
1 � cos2 ✓

� cos ⇠

⇠
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(4.40)

F (⇠) =
3

2

�
1 � cos2 ✓

� sin ⇠

⇠
+
�
1 � 3 cos2 ✓

�✓cos ⇠

⇠2
� sin ⇠

⇠3

◆�
(4.41)

and cos ✓ = e~µ · e~r
ij

as defined above.

Let us now quantitatively discuss the system’s behaviour as a function of its geometry,
i.e., the distance dependence of the couplings ⌦ij and �ij . Fig 4.4 demonstrates this
for ✓ = 0 (dipoles oriented along the direction of their alignment) and for ✓ = ⇡/2
(dipoles oriented perpendicularly to their alignment). We can clearly see that the
interactions in the intermediate range of 0.2 < ⇠ < 1 are much more pronounced when
✓ = ⇡/2.

Additionally, we observe that F (⇠) ! 1 for ⇠ ! 0 and G (⇠) will diverge to ±1
for ⇠ ! 0. Both functions will approach zero, i.e., F (⇠) = G (⇠) = 0 for ⇠ ! 1. In
essence, these properties lead to two prominent limiting cases. First, for ⇠ ! 0, we
neglect the diverging energy shifts and realize that because of F (⇠) = 1 the collective
decay rates become identical, �ij = �, which is oftentimes referred to as the Dicke
model [140], in which one can reduce the Hilbert space of N two-level systems to one
e↵ective spin N/2. The other limiting case, where F (⇠) both vanish and �ij = �ij�
describes two-level emitters infinitely far apart from each other and thus as e↵ectively
independent.

4.3.1 Auxiliary relations

For the time integral, we rewrite the expression as a Cauchy principal value and
retrieve an additional Dirac delta distribution according to the Sokhotski-Plemelj
theorem [141–143]. We haveZ t

t0!�1
dt0 exp

��i (! � i✏± !
0

)
�
t � t0

��
=

1

i (! � i✏± !
0

)
(4.42)

and when integrating over ! this becomes
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as well as Z t
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Figure 4.4: Dissipative and coherent couplings F (⇠) and G (⇠). Here, ⇠ = rij/�0

and
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, i.e., we have scaled the arguments with a factor of 2⇡ for
the plots.

which in the !-integral becomes
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For the angular integral we pull out the derivative with respect to ~r and get
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(4.46)

where we have used ~k · ~r = kr cos ✓ and solved the integration as the spherical Bessel
function of the first kind. Now, for evaluating the gradient we choose e~µ = ez and
have
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2
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and for the second derivative
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(4.48)

Collecting terms and inserting into the original equation in eq. (4.30) with ⇠ := krij

we obtain
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where now cos ✓ := e~µ · e~r
ij

is the angle the vector connecting the emitters i and j
draws with the direction of the transition dipole moment.

For the calculation of ⌦ij = �⌦+

ij � ⌦�
ij , we realize thatZ 1
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since F (krij) is an even function. Thus, we can combine the two integrals to write
down
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with ⇠
0

:= k
0

rij and reinterpret the expression as the real part of a complex path
integral
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(4.52)

For the terms involving exp (i⇠) we close the integration path in the upper half-plane
and pick up the residue at ⇠ = ⇠

0

0 + i✏. For the terms involving exp (�i⇠) we need to
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close the integration path in the lower half-plane, where there is no residue. We get
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(4.53)

which concludes our derivation.

4.4 Super- and Subradiance

In order to illustrate the concept of enhanced (decreased) collective spontaneous
emission by virtue of constructive (destructive) interference of the emitted light, we
will particularize our general formalism from above to two two-level emitters. The
bare atomic states present in the system can be written as

{|ggi , |egi , |gei , |eei} , (4.54)

where the position of g and e indicates, whether we are referring to the first or the
second atom. The Hamiltonian of our system reads

H = !
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�
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1
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2

��
2

�
+ ⌦

�
�+

1

��
2

+ ��
1

�+

2

�
, (4.55)

which by diagonalization provides us with the system’s eigenstates introduced by the
dipole-dipole interaction ⌦ = �G (k

0

r). They are given by

|Gi = |ggi (4.56a)

|Si =
1p
2

(|egi + |gei) (4.56b)

|Ai =
1p
2

(|egi � |gei) (4.56c)

|Ei = |eei (4.56d)

with their corresponding energies EE = 2!
0

, ES = !
0

+ ⌦, EA = !
0

� ⌦, EG = 0.
Those states were first introduced by Dicke [140] and |Si and |Ai are also referred to
as Bell states, especially in quantum information. In such a spin-1-system, a triplet
manifold with |Ei, |Si and |Gi, and a singlet manifold with |Ai exists, The states |Si
and |Ai in the single-excitation manifold constitute a prime example for maximally
entangled states, as they cannot be written as a product of single-atom states, which
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4 Spontaneous Emission

is a result of the interatomic interaction. We can clearly see that |Gi and |Ei are not
influenced by the collective couplings and remain at their respective energies, while the
symmetric state |Si is shifted upwards by ⌦ and the asymmetric state |Ai is shifted
down by the same amount, thus implicitly lifting the degeneracy between the two.
The shift ⌦ can become very large at small interatomic separations up to the point
where the shift would become infinite and therefore the model breaks down. This
would usually happen at the order of the Bohr radius a

0

=, where molecule formation
comes into play.

Given the eigenstates of the system we can perform the following transformation,

�+

1

=
1p
2

(|Ei hS| � |Ei hA| + |Si hG| + |Ai hG|) (4.57a)

�+

2

=
1p
2

(|Ei hS| + |Ei hA| + |Si hG| � |Ai hG|) (4.57b)

allowing us to write down the Liouvillian as

L [⇢] = LS [⇢] + LA [⇢] (4.58)

with

LS [⇢] =
� + �

2
[2 (|Si hE| + |Gi hS|) ⇢ (|Ei hS| + |Si hG|)

� (|Ei hE| + |Si hS|) ⇢� ⇢ (|Ei hE| + |Si hS|)]
(4.59a)

LA [⇢] =
� � �

2
[2 (|Ai hE| + |Gi hA|) ⇢ (|Ei hA| + |Ai hG|)

� (|Ei hE| + |Ai hA|) ⇢� ⇢ (|Ei hE| + |Ai hA|)]
(4.59b)

and we define �S := � + � and �A := � � �, where � = �F (k
0

r).

From these deliberations it is evident that our two-atom system features two
independent, i.e., non-overlapping, decay channels. First, we have |Ei ! |Si ! |Gi,
which we will dub superradiant for F (k

0

r) > 0, as decay takes place with an increased
spontaneous emission rate �S . Secondly, there is |Ei ! |Ai ! |Gi with a decreased
emission rate �A. Thus, we will call this channel subradiant. For F (k

0

r) < 0, the
roles of the superradiant and the subradiant decay channel interchange. In the limit of
F (k

0

r ! 0) = 1, decay of the asymmetric state will vanish completely and the entire
system dynamic is captured by the three states |Ei, |Si, |Gi. If we generalize this to
larger systems, it su�ces to investigate the so-called Dicke states on the surface of
the collective Bloch sphere [140], which are basically the symmetric states in every
excitation manifold as any other states will have zero decay rates and no overlapping
matrix elements with the decaying states. Sometimes these are also called bright
states as they are the only ones that couple to the radiation field and can therefore
be populated by it. The non-decaying non-coupled states are then referred to as
dark states. Figure 4.5 illustrates the energy shifts and decay cascades present in the
system.
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|Si

|Ei

|Gi

|Ai

�
S

�
S

�
A

�
A

0

!0

2!0

2⌦

Figure 4.5: Super- and subradiance in two atoms. The symmetric state |Si and
the asymmetric state |Ai are shifted from the bare atomic energy by
±⌦. There are two non-interacting decay channels: the superradiant
one involving the symmetric state with the rate �S = � + � and the
subradiant one with �A = � + � involving the asymmetric state.
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5 Publication: Cascaded Collective Decay
in Regular Arrays of Cold Trapped
Atoms

The present publication, which constitutes the first publication making up this doctoral
thesis focuses on the study of super- and subradiance in extended toy models of up
to four atoms. When looking at more than two atoms the situation quickly becomes
drastically more involved as there are not just two decay channels anymore and
the separation between them becomes far less simple. The aim of this paper is to
investigate these toy models and, most importantly, study the e↵ects of collective
decay on spectroscopic techniques like the Ramsey procedure. The paper has been
published in Optics Express on December 31st, 2012 [144].

Abstract

Energy and lifetime of collective optical excitations in regular arrays of atoms and
molecules are significantly influenced by dipole-dipole interaction. While the dynamics
of closely positioned atoms can be approximated well by the Dicke superradiance
model, the situation of finite regular configurations is hard to access analytically. Most
treatments use an exciton based description limited to the lowest excitation manifold.
We present a general approach studying the complete decay cascade of a finite regular
array of atoms from the fully inverted to the ground state. We explicitly calculate all
energy shifts and decay rates for two generic cases of a three-atom linear chain and
an equilateral triangle. In numerical calculations we show that despite fairly weak
dipole-dipole interactions, collective vacuum coupling allows for superradiant emission
as well as subradiant states in larger arrays through multi-particle interference. This
induces extra dephasing and modified decay as important limitations for Ramsey
experiments in lattice atomic clock setups as well as for the gain and frequency stability
of superradiant lasers.

5.1 Introduction

The spontaneous decay of an excited atom arises due to its coupling to vacuum
fluctuations of the electromagnetic field as first proposed by Dirac and later analyzed
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by Wigner and Weisskopf. Dicke [145] showed that the vacuum coupling of several
identical atoms at almost the same position leads to correlations among the atoms
and as a result to collective superradiant spontaneous emission. In general, the decay
rate of low energy collective excitations grows linearly with the particle number N .
The resulting collective decay exhibits a delayed intensity maximum proportional to
N2 as a significant deviation from the exponential decay of individual atoms [146,147]
and is called ’superradiance’. The phenomenon has been observed in a large number
of experiments in gases and solids [146,148] and recently also for ultracold quantum
gases [149,150].

The basic phenomenon of superradiance was widely studied theoretically already
decades ago using a variety of analytical approximation methods [151, 152] with a
particularly comprehensive and detailed review by Haroche [147]. These treatments are
mostly based on spatially well-confined samples neglecting finite distance dipole-dipole
interactions or other near-field e↵ects as Van der Waals shifts by collisions (see [147]
for the limits). While in such small-sample configurations all atoms are exposed to the
same environment (vacuum fluctuations) and virtually indistinguishable, in extended
systems of atoms or molecules, as e.g., in optical lattices, this approach has to be
refined to account for finite interaction and correlation lengths. In systems with finite
resonant dipole-dipole interactions along with a lattice symmetry, the lowest energy
eigenstates are given by coherent collective electronic excitations in the material,
called ’excitons’ [153]. Due to their wave-like periodic structure excitons can feature
superradiance as well [154]. Interestingly, it has been noted only very recently, that
also subradiant exciton states can appear in regular optical lattices [155]. In previous
work, we studied the energies and lifetimes of such excitons for ultracold atoms in
1D and 2D optical lattices [155, 156] and in more general configurations . In most
cases it was su�cient to limit ourselves to electrostatic dipole-dipole interactions and
consider coupling among nearest-neighbour sites only. Such collective states were also
considered by other authors, e.g., [157].

In contrast to these treatments, in the present paper we will investigate the full model
for the collective decay process of a few atoms involving multiple excitations up to the
fully inverted state. We refrain from any limiting size and distance approximations
and in particular do not restrict ourselves to the single-excitation manifold. While the
underlying equations for the dynamics are well-established, exact analytic treatments
of the full decay problem for more than two particles are hardly possible and apart
from some special cases, we have to rely on numerical solutions. Besides exhibiting
the underlying basic physical mechanisms of decay channels, correlation buildup and
entanglement, our study aims at direct implications for atomic clock configurations
based on magic wavelength lattices [40], optical storage of qubits in atomic ensembles
and ultrastable superradiant lasers [158–160]. Here, super- and subradiance can play
a decisive limiting or helpful role, as e.g., the Ramsey signal crucially depends on the
remaining excited state population at the time of the second pulse.

To some extent important physical e↵ects can be seen already in the simplest
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5.2 Model

configuration of two two-level atoms with identical transition wavelength �
0

as a
function of the interatomic distance r [138]. As each particle can decay, the doubly
excited state exhibits twice the single atom damping rate to a singly excited state.
Depending on the distance r the excitation distributes di↵erently among the two
single-excitation atomic eigenstates, which due to dipole-dipole interaction are given
by a symmetric and an anti-symmetric superposition of the two dipoles. For small
distances, i.e., r/�

0

⌧ 1, the symmetric state becomes populated dominantly and
is superradiant, while the anti-symmetric one is almost dark. At large distances,
r/�

0

� 1, the damping rate of both states tends to the one of a single atom leading
to quite di↵erent e↵ective dynamics. Here, everything can be calculated explicitly in
an analytical fashion.

For more particles the situation becomes much more di�cult to solve immediately,
since already for the first step we get an increasing number of intermediate states
with the total physical Hilbert space growing as 2N . We will show that analytical
results can still be obtained for some special configurations, like a regular triangle,
while most calculations need to be performed numerically.

The paper is organized as follows: in section 2 we describe the model and exhibit
the dependence of the interaction terms on its geometry. In section 3 we review
general properties and present an analytical solution for three atoms positioned in
an equilateral triangle and compare it to the numerical solution for three atoms in
a chain. Finally we study superradiance in larger systems and its implications on
physical applications numerically.

5.2 Model

Let us consider N identical two-level systems held in a regular spaced configuration
e.g., in a far detuned optical lattice. We describe the spontaneous decay process by
common dipole coupling of the atoms to the free space radiation modes in vacuum
state. Upon rotating wave and Markov approximation one ends up with a standard
Lindblad type master equation including dipole-dipole interaction [136]. Explicitly,
the time-evolution of the density operator is governed by

@⇢̂

@t
= � i

~

h
Ĥ, ⇢̂

i
� L

cd

[⇢̂] , (5.1)

with the Hamiltonian

Ĥ =
X

i

~!
0

S+

i S�
i +

X
i 6=j

~⌦ijS
+

i S�
j . (5.2)

The above master equation could also be formulated using a non-Hermitian Hamilto-
nian, as e.g., in [161], which is equivalent to our formulation. Here, S+

i and S�
i are the

rising and lowering operators for the atomic dipole of the i-th atom with the atomic
transition energy given by ~!

0

, and ⌦ij denotes the resonant dipole-dipole energy
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transfer between the atoms i and j. The collective damping is accounted for by the
Liouvillian

L
cd

[⇢̂] =
1

2

X
i, j

�ij

⇣
S+

i S�
j ⇢̂+ ⇢̂S+

i S�
j � 2S�

i ⇢̂S
+

j

⌘
(5.3)

with �ij being generalized spontaneous emission rates arising from the coupling of the
atomic transition dipoles through the vacuum field [162].

Note, that collective coupling and decay matrices [⌦ij ] and [�ij ] possess non-diagonal
elements, which have to be calculated as a function of the system’s geometry and its
relative angle ✓ to the atomic dipoles µi. In many cases due to the finite correlation
length of vacuum fluctuations these non-diagonal parts can be safely neglected. Here,
we assume the same linear dipole moments and orientation for all particles (µi = µ)
and rij = ri � rj denotes the vector connecting the atom’s positions. Fortunately,
the damping Liouvillian is bilinear in the dipole moment operators, so that the total
interaction is composed of pairwise terms depending on the relative coordinates only.
Thus, for identical atoms we have [138]

�ij =
3�

2
F (k

0

rij) and ⌦ij =
3�

4
G (k

0

rij) (5.4)

with � the single-atom linewidth, k
0

= !
0

/c = 2⇡/�
0

and

F (⇠) =
�
1 � cos2 ✓

� sin ⇠

⇠
+
�
1 � 3 cos2 ✓

�✓cos ⇠

⇠2
� sin ⇠

⇠3

◆
,

G (⇠) = � �1 � cos2 ✓
� cos ⇠

⇠
+
�
1 � 3 cos2 ✓

�✓sin ⇠

⇠2
+

cos ⇠

⇠3

◆
,

(5.5)

where ⇠ = k
0

rij .

It is noteworthy to point out that F (⇠ ! 0) = 2/3, G (⇠) diverges for ⇠ ! 0 and
F (⇠ ! 1) = G (⇠ ! 1) = 0. As a reminder and for later reference the two (scaled)
functions for ✓ = ⇡/2 are shown in fig. 5.1. For this work we will be concerned with
lattice constants (atomic distances) large enough to keep the e↵ect of the divergence
small only. For the collective states of two atoms it is possible to find distances d
at which there is either no energy shift, G(k

0

d) = 0, or no modified spontaneous
emission, F (k

0

d) = 0. Due to the non-periodicity of F and G this cannot be achieved
for more than two atoms in a periodic arrangement. Similarly one can expect the
most significant e↵ects to occur at distances where either F or G has an extremal
value, which also cannot be fulfilled for all atoms in a regular array.

As a first step in investigating the decay properties of the collective states of the
system, we will consider the energy eigenstates including the dipole-dipole couplings
⌦ij . In this basis the Hamiltonian can be rewritten in diagonal form

Ĥ =
X

k

~!kS
+

k S�
k , (5.6)
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Figure 5.1: Collective spontaneous emission �ij/� and resonant dipole-dipole coup-
ling ⌦ij/� for ✓ = ⇡/2 as a function of inter-atomic distance in units of
the resonant wavelength �

0

.

where the energies !k depend on the geometry. When we represent L
cd

in this same
basis, we see that only in very special cases the Liouvillian gets diagonal as well. In
these special cases spontaneous decays occur between these same eigenstates only,
which allows for a simple analytical treatment of the entire system. In the general case,
however, Ĥ and L

cd

have di↵erent eigenstates. Hence, spontaneous decay processes
will lead to superpositions of energy eigenstates inducing oscillatory dynamics and we
need to resort to a numerical analysis. An approach based on the damping basis leads
to equivalent phenomena as it will not diagonalize the Hamiltonian. Despite these
problems, a diagonalization of the |�ij ] and [⌦ij ] matrices can be at least performed
numerically, even for hundreds of atoms. Important properties of energy shifts and
decay rates appearing in the system can be obtained from their eigenvalues without
the need to solve the full dynamics in the excessively large corresponding Hilbert space.
To get some intuitive insight intro their connection to the full system dynamics we
will study this relation closely by investigating special fully solvable simple examples.

5.3 Collective System Dynamics and Examples

5.3.1 General Results

At first we will exhibit some general features of the dynamics. Interestingly, independ-
ent of the geometry we find that the totally inverted state |ei with all N atoms in the
excited state will always decay with a collective emission rate of �e =

P
i � = N�. The

state |ei is also a simultaneous eigenstate of the Hamiltonian with energy Ee = N~!
0
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without any interaction shifts and the Liouvillian with the decayX
i,j

�ijS
+

i S�
j |ei he| =

X
i,j

�ij�ij |ei he| =
X

i

�ii |ei he| = �e |ei he| . (5.7)

In physical terms this means that each atom decays independently as the emitted
photon cannot be reabsorbed by any other atom and no atomic coherence or field is
present to facilitate interference e↵ects. This coincides with the Dicke state prediction
of closely spaced atoms. The number of possible final states of this first decay process
nevertheless grows with the atom number N and the rate �e is split among many
possible paths. The resulting state manifold is closely related to the exciton states
containing only a single excitation, but with the role of ground and excited state
reversed. This manifold now includes super- and subradiant states and in the successive
steps even more channels become available until half of the energy is dissipated.

As a second general result we present the collective decay rate of the single-excitation
symmetric state of N identical atoms,

|si =
1p
N

NX
i=1

|g
1

. . . ei . . . gni , (5.8)

which corresponds to the zero-momentum exciton in a chain of lattice constant a.
This decay rate can be derived analytically as shown in [163] and gives

�s(N) = �

"
1 + 2

N�1X
n=1

⇣
1 � n

N

⌘
F (k

0

an)

#
. (5.9)

We see that the spontaneous decay rate is collectively enhanced by pairwise inter-
actions and can grow linearly with particle number for small chains as predicted by
the Dicke model [147]. For longer chains the long-range contributions become small
and the enhancement saturates with chain length. In fig. 5.2 the damping rate of
the symmetric state for di↵erent lattice constants is shown for ✓ = 0 and ✓ = ⇡/2
as a function of the number of atoms constituting the chain. The chain’s length
is L = (N � 1)a. Let us remark here that the scattering intensity in a particular
directional mode can still grow for large N but the solid angle of this mode shrinks so
that the e↵ect on the total decay rate decreases and the e↵ective lifetime will saturate.
This is good news for atomic lattice clocks, which in this case will not su↵er too much
from superradiant decay.

Throughout this work we will mainly concentrate on 87Sr as a specific example.
To trap these atoms one usually uses a ’magic wavelength’ optical lattice, which
refers to the specific wavelength to minimize or even eliminate the di↵erential light
shift in the 87Sr 1S

0

!3 P
0

clock transition. This wavelength turns out to be
�m = 813.5 ± 0.9 nm [164]. The optical lattice will confine the atoms at a distance of
�m/2 [165] which given in units of the transition wavelength [166] will be

�m

2�
0

⇡ 0.5824. (5.10)
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Figure 5.2: Symmetric exciton state decay rate �s(N)/� as function of atom number
for ✓ = 0 (left) and ✓ = ⇡/2 (right).
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✓ a
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a

Figure 5.3: Linear chain and triangular array of three atoms with lattice constant a
and angle ✓.

As a matter of fact we will see that at the magic wavelength even subradiance can
appear for long lattices, which should prolong the available T

1

-time for readout.

5.3.2 Three Particle Regular Arrays

In this section we will investigate two di↵erent regular geometric arrangements for
N = 3. We compare a linear chain, where we go beyond the single excitation and
nearest-neighbour coupling limits, discussed in [155], to an equilateral triangle, which
has the advantage of being fully analytically treatable. Let us point out, that for two
atoms, e.g., [145], the particular relative arrangement is irrelevant, and therefore the
system can always be handled analytically.

Linear Chain

First, we consider a linear chain of lattice constant a, where the angle between the
atomic dipoles and the direction of the chain is given by ✓ (see fig. 5.3).
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State Involved bare states E �
⇣
�0
2

⌘
�
�
�

m

2

�
|ei |eeei 3!

0

0 0
|2zi |eegi + �

1

|egei + |geei 2!
0

0.25 0.18
|2xi � |eegi + |geei 2!

0

0.12 0.04
|2yi |eegi � �

2

|egei + |geei 2!
0

�0.37 �0.21
|1zi |ggei + �

1

|gegi + |eggi !
0

0.25 0.18
|1xi � |ggei + |eggi !

0

0.12 0.04
|1yi |ggei � �

2

|gegi + |eggi !
0

�0.37 �0.21
|gi |gggi 0 0 0

Table 5.1: Collective states (non-normalized) and energy shifts � [Hz] for lattice
constants a = �

0

/2 and a = �m/2. �
1

⇡ 1.71, �
2

⇡ 1.18 (for a = �
0

/2).

The collective states that arise from the dipole-dipole interaction are listed in
table 5.1, where the values that have been chosen for the numerical treatment are
!

0

= 1014 Hz, � = 1Hz and thus with a = �
0

/2 and ✓ = ⇡/2 we obtain ⌦
12

= ⌦
23

=
0.21 Hz and ⌦

13

= �0.12 Hz, as well as �
12

= �
23

= �0.15 Hz and �
13

= 0.04 Hz. The
energy shifts � of the collective states are independent from !

0

and can be expressed

in terms of the collective parameters as �⌦
13

and
⇣

⌦
13

±
p

8⌦2

12

+ ⌦2

13

⌘
/2.

With this we can now study the system’s decay properties for arbitrary initial
preparations. Figure 5.4 (right) depicts the decay from the |2zi state, which involves
all three single excitation states |1xi, |1yi and |1zi and finally populates the ground
state |gi. The initial state decays exponentially and ’feeds’ the intermediate states
whose populations (per feeding state) over time obey

⇢
interm

(t) = A [1 � exp (�⌫t)]] exp (��t) , (5.11)

where A is the amplitude, ⌫ denotes the feeding rate responsible for increasing the
population and � is the state’s decay rate. In this manner we have studied the
system’s behaviour for arbitrary initial preparations, where our results are summarized
in table 5.2. Here, the diagonal entries refer to the states’ decay rates, while the
o↵-diagonal ones describe the feeding rate from an upper to a lower state. A scheme
visualizing the various decay channels is given in fig. 5.4 (left).

Let us point out that the decay rates of the single-excitation states correspond
exactly to the eigenvalues of the matrix [�ij ], that can be built up from the �ij , since
� ([�ij ]) = {1.23, 0.96, 0.81}, while the decay rates of the doubly excited states are
larger by exactly one �.

Equilateral triangle

Now, we consider an arrangement of the atoms in an equilateral triangle of length a
with the atomic dipoles drawing a right angle to the plane of the triangle (see fig. 5.3).
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e 2z 2x 2y 1z 1x 1y g
e 3
2z 1.19 1.81
2x 1.04 196
2y 0.77 2.23
1z 0.99 1.18 1.38 0.81
1x 0.87 1.00 1.30 0.96
1y 0.52 0.76 1.00 1.23
g 0.81 0.96 1.23 0

Table 5.2: [Hz] Decay (diagonal entries) and feeding rates for the collective states in
a chain of lattice constant a = �

0

/2.
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Figure 5.4: Decay scheme (left) and cascade dynamics from |2zi state via the single-
excitation states |1zi, |1xi and |1yi to the ground state for a chain with
spacing a = �

0

/2.
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State Involved bare states E �
|ei |eeei 3!

0

0
|s2i |eegi + |egei + |geei 2!

0

2⌦
|a2i |eegi � 2 |egei + |geei 2!

0

�⌦
|b2i � |eegi + |geei 2!

0

�⌦
|s1i |ggei + |gegi + |eggi !

0

2⌦
|a1i |ggei � 2 |gegi + |eggi !

0

�⌦
|b1i � |ggei + |eggi !

0

�⌦
|gi |gggi 0 0

Table 5.3: Collective states (non-normalized) in the equilateral triangle with ⌦ =
3�G(k

0

a)/4.

Due to the fact that in this particular configuration ⌦ij = ⌦ and �ij = � for all i 6= j
the coe�cient matrices [⌦ij ] and [�ij ] assume the same structure. As a consequence,
the Hamiltonian as well as the Liouvillian are diagonal in the same basis, which allows
for an analytical discussion of the system.

Again, we diagonalize the Hamiltonian, where the diagonal states with their energy
are put down in table 5.3. In this setup, since all mutual couplings have the same
value ⌦, the states |ai and |bi are degenerate, as they experience the same energy
shift. Notice the fairly close correspondence to the states that appear in the chain
(table 5.1). Moreover, the existence of two symmetric states |s1i and |s2i shall be
pointed out, which is a consequence of the uniform mutual coupling as well.

Figure 5.5 shows the decay from the fully inverted state |ei for a = �
0

/5, corres-
ponding to � = 0.71�. Notice, that the majority of the population decays via the
symmetric channels. For a negative � the symmetric states |sii (yellow and green)
feature a diminished decay rate, while the states |aii and |bii, which employ the same
behaviour (black and grey) become superradiant. As above, we show the decay and
feeding rates in table 5.4.

The decay scheme for this situation looks quite similar to the one of the chain
(Figure 5.4), except that for one and two excitations there is only one state with a
positive energy shift, while the other two states are degenerate and shifted downwards.

In fig. 5.6 (left) we compare the decay process to the ground state for a magic
wavelength distance (a = �m/2, dashed line) and close positioning of the atoms
(a = �

0

/5, solid line). The decay of the fully inverted state is not a↵ected by
the system’s geometry and will therefore show the same exponential decay for any
configuration.

For � = � the symmetric decay channel |ei ! |s2i ! |s1i ! |gi decouples from
the two channels |a2i ! |a1i and |b2i ! |b1i, where the latter two will not decay
to the ground state, yielding two dark states in the single-excitation manifold. For
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Figure 5.5: Decay from the fully inverted state via |s2i, |a2i (and |b2i, which due to
the degeneracy shows the sam behaviour) and the single-excitation states
|s1i and |a1i (and |b1i) to the ground state for � = 0.71� (a = �

0

/5).

e s2 a2 b2 s1 a1 b1 g
e 3�
s2 � � 2� 2� + 2�
a2 � + � 2� � �
b2 � + � 2� � �
s1 � � � 3� � � 3� � + 2�
a1 � + 3� � � � � �
b1 � + 3� � � � � �
g � + 2� � � � � � � 0

Table 5.4: Decay rates (diagonal entries) and feeding rates for the equilateral triangle
where we have a uniform collective spontaneous emission rate � = �ij .
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Figure 5.6: Collective decay from fully excited state to the ground state in the
equilateral triangle for a = �

0

/5 and a = �m/2 (left) and its influence
on the maximal Ramsey signal contrast for independent atoms, atoms
closely positioned in a triangle as well as in a chain (green) and at magic
wavelength-distance (right).

� = 0 the system behaves as independent two-level subsystems and no distinction in
terms of emission rates can be made. Again, we observe, that the decay rates for the
single-excitation states coincide with the eigenvalues of the [�ij ]-matrix, which are
� ([�ij ]) = {� + 2�, � � �}.

5.4 Superradiance in Larger Extended Arrays

One characteristic feature of Dicke superradiance is the pulsed emission with an
increase of the energy emission as a function of time in an initial pulse buildup
phase [160]. We will now study this phenomenon in our finite spaced arrays and look
at the system’s energy emission given by W (t) = �@thĤi⇢̂(t). For very close atoms in
the Dicke limit where decay occurs only via the symmetric states, the maximum occurs
exactly when half of the energy is lost and is given by W

max

(N)/� = N(N + 2)/4.
This is strongly modified when other decay channels get mixed due to finite atom-atom
distance, even for two atoms only [167]. Surprisingly, as shown in the following
numerical solutions of the master equation, one obtains an e↵ectively much smaller
maximum of the energy emission, W

max

, for finite lattice constants. In fig. 5.7 the
maximum emission intensity relative to the initial decay rate of the fully inverted
state is depicted as a function of the number of atoms in the chain for di↵erent lattice
constants. The distance df is the first root of F , namely F (k

0

df ) = 0, and dg is the
first root of G, analogously. We note that the closer the atoms are positioned in the
chain the more obvious the superradiant nature of the system becomes, but even for
a�

0

/10 we are far from the values of the Dicke case. Even a small contribution of
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Figure 5.7: Maximum of the energy emission as a function of the number of atoms
in the chain for small (left) and large (right) lattice constants a. The
distances df and dg refer to the first root of the functions F and G,
respectively.

slowly decaying states has a a large influence due to their long lifetime. On the other
hand, even for larger lattice constants, i.e., a > �

0

/2, the emission per atom increases
with the number of atoms in contrast to independent decay.

5.4.1 Ramsey Signal

As the decay of excitation is directly accompanied by loss of atomic coherence,
enhanced decay rates influence the spectroscopic properties of the collective system.
As a practical example we consider two-pulse Ramsey spectroscopy, where the first
⇡/2-pulse prepares a product state of half-exited atoms, which potentially exhibit
strong superradiance. Using the two generic three-atom configurations discussed above,
we now study the maximum possible Ramsey signal contrast, which emerges if we
start with all atoms in the ground state, apply a resonant ⇡/2-pulse (’Hadamard’-gate)
with the same phase to each atom, then leave the systems to its free dynamics, and
after a time t apply a second ⇡/2-pulse (once in-phase and once with a phase shift of
⇡), again to each atom with the same phase and look at the di↵erence of these two
signals. Figure 5.6 (right) shows the survival probability of the fully inverted state |ei
as a function of the time t in between the two pulses for independent atoms (black),
close positioning in a triangle (red), where dispersive dephasing via ⌦ij occurs, a chain
of lattice constant a = �

0

/4 (green), where we observe a superradiant decay via �ij ,
and the magic wavelength chain (blue), which is clearly subradiant.
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5.5 Conclusions and Outlook

We have shown that despite the system size being much larger than a wavelength,
collective e↵ects in the decay and energy shifts of atoms in regular optical lattices will
lead to important changes in the system dynamics. In conjunction with the appearance
of fast decay via superradiant states, one usually also finds subradiant channels and
states, where the population can be trapped and which feature di↵erent energy shifts.
In general, we see that superradiance can persist in spatially distributed arrays to
a surprising extent, but it will be accompanied by subradiant states, so that we get
a large spread in the behaviour of individual trajectories. In contrast, for average
quantities the changes get less and less significant.

The discussion in the present paper, even though presented in the language of
ultracold atoms in optical lattices, can be adopted for any set-up of ordered active
materials, e.g., an array of semiconductor quantum dots, a chain of colour centres
in solids, or a cluster of organic molecules. Collective states in these structures can
play a key role in the physical implementation of quantum information processing,
and their lifetimes are critical in this context. Furthermore, these phenomena can be
relevant in the context of cooling molecules by superradiant emissions [168].
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6 Publication: Protected State Enhanced
Quantum Metrology in Dense
Ensembles of Two-Level Emitters

In this letter, we propose an alteration of the well-established Ramsey spectroscopy
procedure in the presence of dipole-dipole interaction. We suggest to phase-spread
the atomic coherences after the first ⇡/2-pulse and undo the spread before the second
⇡/2-pulse. As a proof of principle, we have investigated this idea for two atoms and see
that the sensitivity could be improved significantly. We go on to analyzing the concept
for larger systems and perform numerical simulations. This work was published in
Physical Review Letters on September 18th, 2013 [169].

Abstract

Ramsey interferometry is routinely used in quantum metrology for the most sensitive
measurements of optical clock frequencies. Spontaneous decay to the electromagnetic
vacuum ultimately limits the interrogation time and thus sets a lower bound to the
optimal frequency sensitivity. In dense ensembles of two-level systems the presence of
collective e↵ects such as superradiance and dipole-dipole interaction tends to decrease
the sensitivity even further. We show that by a redesign of the Ramsey-pulse sequence
to include di↵erent rotations of individual spins that e↵ectively fold the collective state
onto a state close to the centre of the Bloch sphere, partial protection from collective
decoherence is possible. This allows a significant improvement in the sensitivity limit
of a clock transition detection scheme over the conventional Ramsey method for
interacting systems and even for non-interacting decaying atoms.

6.1 Introduction

The precise measurement of time using suitable atomic transitions is a major achieve-
ment of quantum metrology. The Ramsey interferometry procedure plays a crucial
role as it allows an accurate locking of the microwave or optical oscillator to the
transition frequency in the atom. Typical early realizations were based on atomic
beams or later on laser-cooled atomic fountains [75], where the atoms would interact
with two consecutive Rabi pulses. With optical lattices [40,165] time measurements
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were expected to become even more accurate due to longer interaction times and
the elimination of collisions (see [170, 171] for recent reviews). To reduce quantum
projection noise (scaling as 1/

p
N for N atoms) and to speed up the measurement,

setups usually involve an as large as possible number of atoms. In a finite volume, of
course, this brings collective e↵ects like superradiance and dipole-dipole shifts to the
table [144]. While some techniques rely on the engineering of particular geometries
without the need to alter the internal atomic states [107], exploiting the uncertainty
principle by employing squeezed states [172–174] can be helpful as well to achieve less
noise with lower atom numbers [175,176]. These techniques rely heavily on entangle-
ment [177,178] among atoms and require very careful preparation and isolation of the
ensemble.

When, finally, interrogation times reached the lifetime of the excited state, spon-
taneous emission became a critical factor for the contrast of the Ramsey fringes.
Interestingly, despite the use of long lived clock states, for multiple atoms in close
proximity to each other, collective spontaneous emission can still reach a detrimental
magnitude, namely proportional to the atom number [136,138]. While this is usually
limited to volumes of the order of a cubic wavelength, in regular arrays, such as an
optical lattice, the e↵ect can extend over tens of lattice sites [179].

In this paper, we propose a strategy that works on the level of the Ramsey pulses
and which we dub the ’asymmetric Ramsey technique’, in contrast to the conventional
symmetric Ramsey technique that employs only identical ⇡/2 pulses applied to all
atoms. While the conventional Ramsey technique excites superposition states, which
possess a maximum dipole moment and thus are most sensitive to superradiance, this
new approach allows the selection of long-lived collective states (or ’dark states’) to
improve the sensitivity of the clock signal. The procedure requires a modification of the
Ramsey steps: after the initial ⇡/2 pulse is applied, each atomic coherence is rotated by
a distinct phase, resulting in a subradiant collective state with vanishing classical dipole
(with a lifetime which can be even longer than that of the independent atoms [156]).
The detection procedure is then followed leading to a significant improvement in the
sensitivity limit over the conventional Ramsey technique.

6.2 Model

We assume N identical two-level emitters with levels |gi and |ei separated by !
0

in a geometry defined by ri for i = 1, ...N . For the Pauli ladder operators �±
i and

subsequently �x
i = �+

i + ��
i , �y

i = �i(�+

i � ��
i ) and �z

i = �+

i �
�
i � ��

i �
+

i unitary

rotations R(j)
µ ['] = exp

⇣
i'�µ

j /2
⌘

where µ 2 {x, y, z} are defined.

The independent atom decay rates are �; the cooperative nature of decay for atom
pairs i, j is reflected by mutual decay rates �ij (in the following we use �ii = �). Via
the vacuum, dipole-dipole interactions occur characterized by the frequency shifts ⌦ij .
Both functions depend on rij [144]. The dynamics of the system can be described via
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Figure 6.1: State protective Ramsey sequence. The ensemble of N spins starts with
all spins down in a collective coherent pure spin state on the surface
of the collective Bloch sphere (radius N/2). Individual ⇡/2 pulses are

followed by phase encoding operations of angles '(m)

j = (2⇡m/N)(j � 1)
where j = 1, ...N and m = 1, ...[N/2], which brings the total spin close
to the centre of the Bloch sphere (third-fifth steps are shown on small
Bloch spheres of radius 1/2). After time ⌧ , the phase encoding operation
is reversed and ⇡/2 pulses prepare the ensemble (now in a mixed state
shown on the large collective Bloch sphere) for the detection of the
population di↵erence signal.

the master equation
@⇢

@t
i[⇢, H] + L[⇢], (6.1)

where the Hamiltonian is given by

H =
!

2

X
i

�z
i +

X
i 6=j

⌦ij �
+

i �
�
j (6.2)

with ! = !
0

� !l (!l is the reference frequency) and the Liouvillian is

L[⇢] =
1

2

X
i,j

�ij

h
2��

i ⇢ �
+

j � �+

i �
�
j ⇢� ⇢ �+

i �
�
j

i
. (6.3)

A typical procedure in spectroscopic experiments is the Ramsey method of separated
oscillatory fields [64]. The sequence assumes the ensemble of spins initiated in the
ground state at time ti such that hSzi(ti) = �N/2 where Sz =

P
i �

z
i /2. Three stages

follow: (i) a quick pulse between ti and t = 0 rotates the atoms into a collective
state in the xy-plane that exhibits maximal dipole, (ii) free evolution for the time ⌧
and (iii) a second quick pulse flips the spins up. The detected signal is a measure of
population inversion and therefore proportional to hSzi(tf ). Analysis of this signal
gives the sensitivity as a figure of merit in metrology

�! = min


�Sz(!, ⌧)

|@!hSzi(!, ⌧)|
�

, (6.4)
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where the minimization is performed with respect to !.

We follow the dynamics as described above in a density matrix formalism. We start
with ⇢i = |Gi hG|, transform it into ⇢

0

= R
1

⇢i R†
1

, evolve it into ⇢⌧ by solving eq. (6.1)

and finally transform it into ⇢f = R
2

⇢⌧ R†
2

. The detected signal and its variance are
computed as hSzi and �Sz from ⇢f .

As a basis of comparison, we take independent systems (�ij = 0 and ⌦ij = 0 for

i 6= j). The rotation pulses are R
1

= R
2

=
N

j R(j)
y [⇡/2] and the resulting sensitivity

is

[�!]
indep

= min

"p
e�⌧ � cos2(!⌧)p
N |⌧ · sin(!⌧)|

#
=

e�⌧/2

⌧
p

N
. (6.5)

Further optimization with respect to the interrogation time gives an optimal ⌧
opt

=
2/� and optimal sensitivity �e/2

p
N , which shows that the main impediment of

Ramsey interferometry is the limitation in the interrogation times owing to the decay
of the dipoles.

As a principal advance of this paper, we propose a generalized Ramsey sequence
(as illustrated in fig. 6.1) that deviates from the typical one by a redesign of the two
pulses at times t = 0 and t = ⌧ , intended to drive the spin system into states that are
protected from the environmental decoherence. To accomplish this, one complements
the normal ⇡/2 pulse with a phase distribution pulse, which for a particular atom j is

represented by a rotation around the z-direction with the angle '(m)

j = 2⇡m(j � 1)/N ,
where m = 1, ...[N/2] and [N/2] is the integer before N/2. The first Ramsey pulse
operator is then

R
1

=
O

j

R(j)
z

h
'(m)

j

i
· R(j)

y

h⇡
2

i
.

To justify the choice of the rotation angles notice that at time t = 0, for any set

of '(m)

j , the system is in a state of zero average collective spin: at an intuitive level
this means that the phase-spread operation folds the system collective state from
the surface of the Bloch sphere onto a zone close to its centre. For small atom-atom
separations, collective states of higher symmetry are shorter lived (culminating, at zero
separation, with the maximally symmetric superradiant Dicke state [140] of rate N�).
Let us then try to sketch how asymmetric states can be build by imposing orthogonality

of a phase-spread state | 'i =
NN

j=1

h
|gi +

�
ei'
�
(j�1) |ei

i
/
p

2 to the multitude of

symmetric states of the system. While generally this is an unsolvable problem (see
supplement), we can get some insight using the symmetric state in the single excitation

subspace, the so-called W-state |W i. From hW | 'i =
PN

j=1

�
ei'
�j

= 0 we get the

solutions ' = 2⇡m/N which justify the choice from above '(m)

j .

At time ⌧ the phase spread is reversed and a ⇡/2 pulse follows

R
2

=
O

j

R(j)
y

h⇡
2

i
· R(j)

z

h
�'(m)

j

i
.
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Figure 6.2: Two atoms metrology. (a) Normalized mutual decay rate and dipole-
dipole frequency shift for a pair of atoms as a function of r/�. For
positive/negative �, the asymmetric state is subradiant/superradiant
(indicated by the colour-coded regions). (b) Level scheme in the dressed
basis showing the two independent decay channels with modified rates �S

and �A. (c) Optimal sensitivity as a function of ⌧�. The atom separation
is r/� = 0.3 corresponding to � ⇡ 0.41 � and ⌦ ⇡ 0.29 �. The minimum
for the asymmetric addressing is reached around ⌧ ' 2/�A.

6.3 Two Atoms Case

Let us use a simple system to elucidate the di↵erences between typical and asymmetric
Ramsey sequences. We consider atoms 1 and 2 separated by a distance r with
� = �

12

(r) and ⌦ = ⌦
12

(r) (their dependence on r is shown in fig. 6.2a). The
diagonalization of the Hamiltonian is performed by a transformation from the bare basis
{|ggi , |gei , |egi , |eei} to the collective basis {|Gi , |Si , |Ai , |Ei} with |Gi = |ggi,
|Si = (|egi + |gei) /

p
2, |Ai = (|egi � |gei) /

p
2 and |Ei = |eei. This transformation

diagonalizes the dissipative dynamics as well, and leads to two independent decay
channels with damping rates �S = � + � and �A = � � � as illustrated in fig. 6.2b.
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We follow the evolution of ⇢i = |Gi hG| in the collective basis and compute the
detected signal and its variance from ⇢⌧ . For the symmetric Ramsey sequence one
obtains hSzi

S

= 2
p

2< �⇢ES
⌧ + ⇢SG

⌧

�
which can be calculated by solving the evolution

between 0 and ⌧ from the following set of coupled equations

⇢̇ES =


�2� + �S

2
� i(! � ⌦)

�
⇢ES , (6.6a)

⇢̇SG =
h
��S

2
� i(! + ⌦)

i
⇢SG + �S ⇢

ES . (6.6b)
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Figure 6.3: Numerical investigations. a) and b) Numerical results for the square
and a 5 atom-chain. c) Results of diagonalization for an ideal system
of 5 equally mutually coupled emitters. The states are ordered with
increasing e↵ective decay rate. The occupancy is shown in the histograms
for symmetric vs. asymmetric Ramsey sequences.
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The computation of the signal variance requires the derivation ofD
(Sz)2

E
S

= 2
⇥
1 + ⇢SS

⌧ � ⇢AA
⌧ + 2< �⇢EG

⌧

�⇤
,

thus solving
⇢̇EE = �2�⇢EE ,

⇢̇SS = ��S

�
⇢SS � ⇢EE

�
,

⇢̇AA = ��A

�
⇢AA � ⇢EE

�
,

⇢̇EG = �(� + 2i!)⇢EG.

In contrast, for the asymmetric Ramsey sequence we get hSzi
A

= 2
p

2< �⇢EA
⌧ � ⇢AG

⌧

�
and

D
(Sz)2

E
A

= 2
⇥
1 + ⇢AA

⌧ � ⇢SS
⌧ � 2< �⇢EG

⌧

�⇤
, where the extra coherences can be

derived from the solutions of

⇢̇EA =


�2� + �A

2
� i(! + ⌦)

�
⇢EA, (6.7a)

⇢̇AG =
h
��A

2
� i(! � ⌦)

i
⇢AG + �A ⇢

EA. (6.7b)

The minimum sensitivities depending on ⌧ after optimization with respect to ! can
be very well approximated by

[�!]
S

=

p
2 (1 + aSe�2�⌧ + bSe��

S

⌧ � cSe��
A

⌧ )

⌧ · e��
S

⌧/2

�
e��⌧A�

S + A+

S

� (6.8a)

[�!]
A

=

p
2 (1 + aAe�2�⌧ + bAe��

A

⌧ � cAe��
S

⌧ )

⌧ · e��
A

⌧/2

�
e��⌧A+

A + A�
A

� , (6.8b)

where a, b, c and A± are given by the system’s geometry (see supplement).

Assuming a separation of timescales for example when �A ⌧ �, �S , the sensitivity
[�!]

A

scales similarly to the independent sensitivity of eq. (6.5) with � replaced by
�A. This holds approximately even in the intermediate regime shown in fig. 6.2c
where �A ' 0.59 �, as transpiring from the scaling of the blue (squares) line. For
closely spaced atoms, the result is easy to interpret and extremely encouraging
since it allows for large interrogation times and direct improvement of the minimum
sensitivity. In the general case, of varying the distance between atoms for example to
the second region of fig. 6.2a, the symmetric state becomes subradiant instead and
the symmetric procedure is the optimal one, however providing only a minimal gain
over the independent atom case. This is relevant for the case of linear atom chains
separated by a magic wavelength [180], where the conventional Ramsey technique is
optimal.
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6.4 Numerical Results

Let us now extend our model to more general configurations of a few two-level systems
in various geometries. In principle, the configuration can be generalized to a 2D or
3D lattice but one ends up with large Hilbert spaces rather quickly that render simple
numerical methods unfeasible. To illustrate the e↵ectiveness of the asymmetric Ramsey
method we particularize to the two situations depicted in fig. 6.3, i.e., square and
linear geometries. The results are presented in fig. 6.3a,b for all possible phase-spread

angle sets, i.e., varying the index m of '(m)

j from 1 to [N/2] (N = 4 for square and 5
for the chain) and for a lattice constant a/� = 0.3.

To motivate further, we consider a simplified system of five closely positioned
emitters (a/� = 0.2) with uniform mutual couplings, i.e., ⌦ij = ⌦ and �ij = � for
every i 6= j. Simultaneous diagonalization of the Hamiltonian and Liouvillian is
then possible and it leads to 2N states | ji each with an associated decay channel
�j , as shown in fig. 6.3c. The histograms show the state population after the first
symmetric Ramsey pulse in contrast to the population after the first asymmetric
('(1)-spread) Ramsey pulse. Clearly, the conventional Ramsey procedure addresses
the symmetric states only, which feature the highest decay rates, while the generalized
method distributes the population among states with lower decay rates.

While the examples studied in fig. 6.3 are a proof-of-principle for the phase-spread
mechanism we propose, a general optimization for arbitrary distances and geometries
is not straightforward and needs to be accompanied by more sophisticated numerical
simulations. For the linear chain case for a ratio a/� = 0.15, the two nearest neighbours
contribute positively while the outer ones feature a negative coupling (see fig. 6.2a).
The strategy to be employed is therefore not clear; for instance, as seen in fig. 6.3b, a

simple '(1)

j phase distribution performs worse than the symmetric Ramsey sequence

while great improvement is introduced by applying '(2)

j shifts.

Experimental investigations of the mechanism described above must mainly address
the question of individual phase writing on distinguishable emitters. As one particular
realization, a chain of atoms excited by a laser tilted by some angle ↵ opens up
the possibility of imprinting a varying phase 'j = k

0

(j � 1)a/ cos(↵) for the jth

atom. Note, that interestingly for a strontium magic wavelength lattice, excitation
at about 90� automatically excites long lived exciton states close to the optimum.
In a 2D lattice this still is fulfilled quite well by excitation from the third direction
perpendicular to the plane. For a cube the situation is more tricky and requires careful
angle optimization for which preliminary calculations are promising and will be fully
investigated in a future publication.

While the main focus of this paper is the case of ensembles of systems coupled via
a naturally occurring bath (the electromagnetic vacuum), this formalism can treat
general cases of engineered baths. For example, the common interaction of atoms
with a decaying optical cavity field [181], combined with elimination of the cavity
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mode can lead to equal mutual coupling between any pair of atoms. Another example
is that of several superconducting qubits coupled to CPW transmission lines and
resonators [182–184]. Here, on the one hand the distance of the particles is much
smaller than a wavelength so the e↵ects are very large, but on the other hand the
individual transition frequencies, Rabi amplitudes and phases can be controlled very
well.

Let us finally remark on multipartite entanglement. First, our technique hints
towards the possibility of preparing multipartite entangled states via dissipative
techniques. The phase-spreading technique prepares the initial state as a separable
state with a large contribution from a quasi non-decaying state. After considerable
evolution time ⌧ the correlated environment filters out all other contributions except
for the decoherence-free state which necessarily presents quantum correlations (as a
basis of comparison consider the 2 atom case where the |Ai is maximally entangled).
Second, the state protection operation can as well be tested for the protection of
entanglement stored in collective states. This can for example be employed in schemes
where spin squeezed states are used for sensitive phase detection to minimize their
degradation during pure dissipative evolution periods.

6.5 Concluding Remarks

We have described a state protective mechanism applied to a collection of vacuum-
coupled two level systems that can be employed in quantum metrology applications for
enhanced detection of transition frequencies. The generality of the mechanism opens
the way for investigations into more complex engineered reservoirs (atoms in mode-
structuring cavities, superconducting qubits coupled to CPW transmission lines) and
di↵erent noise models such as phase-correlated noise (as treated in [185]). Applications
involving multipartite entanglement are also envisioned, such as protection of spin
squeezed states during dissipative evolution and the design of dissipation-induced
entangling schemes.

Acknowledgements

We are grateful to H. Zoubi, M. Skotiniotis, W. Niedenzu and M. Holland for useful
comments on the manuscript and to S. Krämer for assistance with numerics. We
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6.6 Supplementary Material

6.6.1 Analytical Expressions for the Two Atom Case

The parameters a, b, c and A± depend on the relative distance r/� between the
two atoms via the decay rates �S = � + � and �A = � � � as well as the coherent
dipole-dipole energy shift ⌦. Their explicit functional dependence on r/� and the
angle ✓ (between the direction of the transition dipoles and the distance between the
atoms) is given as

�

�
=

3

2

�
1 � cos2 ✓

� sin ⇠

⇠
+
�
1 � 3 cos2 ✓

�✓cos ⇠

⇠2
� sin ⇠

⇠3

◆
(6.9a)

⌦

�
= �3

4

�
1 � cos2 ✓

� cos ⇠

⇠
+
�
1 � 3 cos2 ✓

�✓sin ⇠

⇠2
+

cos ⇠

⇠3

◆
, (6.9b)

where ⇠ = kr = 2⇡r/� and we have set ✓ = ⇡/2 for our calculations.

The expressions in the minimum sensitivity for the symmetric Ramsey procedure
are then

aS =
1

4

✓
�A

�S
� �S

�A

◆
, (6.10a)

bS =
4� � �S

4�A
, (6.10b)

cS =
�A

4�S
, (6.10c)

A±
S =

q�
↵±

S

�
2

+ B2

S , (6.10d)

where we have introduced the abbreviations

↵±
S =1 ± ��S

�2 + 4⌦2

, (6.11a)

BS =
2⌦�S

�2 + 4⌦2

. (6.11b)

For the asymmetric Ramsey procedure, i.e., a '(1)-spread,

aA = �aS =
1

4

✓
�S

�A
� �A

�S

◆
, (6.12a)

bA =
4� � �A

4�S
, (6.12b)

cA =
�S

4�A
, (6.12c)

A±
A =

q�
↵±

A

�
2

+ B2

A, (6.12d)

70



6.6 Supplementary Material

r/λ = 0.5

Γτ

δω

6543210

2

1.5

1

0.5

0

r/λ = 0.3

Γτ

δω

6543210

2

1.5

1

0.5

0

r/λ = 0.2

Γτ

δω

6543210

2

1.5

1

0.5

0

Figure 6.4: Analytical expressions (dashed) and numerical results (solid) for both the
symmetric and asymmetric Ramsey procedures are compared showing
almost perfect agreement (up to the small oscillations terms ignored in
the derivation). Three distances have been chosen: r/� = 0.2, 0.3 and
0.5.

where we again employ abbreviations

↵±
A = 1 ± ��A

�2 + 4⌦2

, (6.13a)

BA =
2⌦�A

�2 + 4⌦2

. (6.13b)

The approximations that come into play are ⌦ ⌧ ! and we neglect the phase shift
that emerges between the expectation value and the variance due to the dipole-dipole
interaction. The agreement between the analytical expressions above and numerical
computations is obvious from fig. 6.4.

6.6.2 Phase-Spread Operation

After preparation of the initial collective state

| i =
NO

j=1

"
|gi +

�
ei'
�j�1 |eip
2

#
, (6.14)

in the asymmetric Ramsey procedure, where ' = '(1) = 2⇡/N , it is easy to see that

hW | i =
NX

j=1

�
ei'
�j�1

= 0, (6.15)

corresponding to a division of the unit circle into N segments with equal angles, yielding
an almost trivial vector sum of zero. This can be generalized to the µ-excitations
symmetric state, where

hs(µ)| i =
MX

j=0

p(j, µ)
�
ei'
�j

(6.16)
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with M = µ
⇣
N � µ+1

2

⌘
and p(j, µ) is the integral partition of j restricted to µ

summands, in essence counting how many possibilities there are to build up the
number j from a sum of µ integers smaller than j. Unfortunately, this is a fractal
function. One can show for concrete µ that hs(µ)| i = 0, but due to the fractal nature
of p(j, µ) that statement cannot be written down in a closed way for arbitrary µ.
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As a continuation and extension of the work that we did in the above letter, this
more comprehensive article looks at the optimal phase-spread angles, which we have
determined to be ⇡ between neighbouring atoms and, most importantly, at scaling
laws of the benefit of our technique with the system size. We see that, in principle, the
larger the system, the more pronounced subradiant states appear, which favours our
idea of using these to improve the measurement sensitivity. The article was published
in Physical Review A on November 11th, 2014 [187].

Abstract

We study a modified Ramsey spectroscopy technique employing slowly decaying states
for quantum metrology applications using dense ensembles. While closely positioned
atoms exhibit superradiant collective decay and dipole-dipole induced frequency shifts,
recent results [Ostermann, Ritsch and Genes, Phys. Rev. Lett. 111, 123601 (2013)]
suggest the possibility to suppress such detrimental e↵ects and achieve an even better
scaling of the frequency sensitivity with interrogation time than for noninteracting
particles. Here we present an in-depth analysis of this ’protected subspace Ramsey
technique’ using improved analytical middling and numerical simulations including
larger 3D samples. Surprisingly we find that using sub-radiant states of N particles
to encode the atomic coherence yields a scaling of the optimal sensitivity better than
1/

p
N . Applied to ultracold atoms in 3D optical lattices we predict a precision beyond

the single atom linewidth.

7.1 Introduction

Recent experimental setups have demonstrated Raman and Ramsey spectroscopy on
narrow atomic clock transitions using cold atoms trapped in 1D magic wavelength
optical lattices with unprecedented precision below one Hertz [42, 188]. While on the
one hand in this extreme limit even weak atom-atom interactions cause perturbations,
on the other hand such setups provide a unique testing ground for measuring such
tiny corrections [189]. From the point of view of an atomic clock or a superradiant
laser [190] interactions constitute a perturbation. In particular at higher particle
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densities dipole-dipole interaction and collective decay tend to introduce shifts and
dephasing [136, 138, 144, 156], which limit the useful interrogation time. As these
are essentially bipartite interactions, they cannot be corrected simply by rephasing
techniques. While for 87Sr with its mHz-linewidth, decay is no major limitation at
the moment, alternative approaches with e.g., calcium atoms have already reached
this limit [191].

Over the past couple of years a considerable number of theoretical proposals to
deal with metrology bounds have been put forward (see Refs. [185,192–196]). In our
recent theoretical proposal [169] we suggested that by a proper modification of the
standard Ramsey interferometry technique (SRT) on interacting two-level ensembles,
the detrimental e↵ect of collective decay can be minimized and surprisingly to some
extent even reversed. The technique takes advantage of the atomic interactions to
suppress decay by transferring the atomic excitation to subradiant collective states.
We dub this method protective Ramsey technique (PRT). It might be less surprising
in hindsight, but still is puzzling, that an optically highly excited collective state
of atomic dipoles can be prevented from decay via destructive interferences of the
field emitted by the individual dipoles. Interestingly, one finds an unexpected fast
growth of the lifetime of the excited states with the particle number. Employing the
proposed techniques these long-lived states can then be used for an enhanced Ramsey
spectroscopy allowing for a significantly higher precision than even for independently
decaying atoms paving the way for implementations of this technique with 3D lattices.

The method requires an additional individually controlled single particle spin
rotation, which is added after the first and reversed before the final Ramsey pulse.
In consequence, the total ensemble spin is shifted towards zero by spreading the
individual spins by predefined amounts almost homogeneously around the equatorial
plane of the Bloch sphere. Thus the ensemble becomes classically nonradiative during
free evolution. While this should obviously work for tightly packed ensembles confined
within a cubic wavelength, we demonstrate that it works almost as well in 3D regular
lattices. In this case it is not a priori clear which would be the most long lived
configuration, but the minimum decay rate can be inferred from the eigenvalues of the
collective decay Liouvillian operator. It is of course an extra technical challenge to
implement the required optimal transformation as it in general requires individual spin
addressing. In practise, however, in many cases, a proper use of phases introduced by
a designed lattice and excitation geometry turns out to be su�cient to get very close
to such an optimal state with a single laser applied at an optimal angle.

It is generally thought that, in order to beat the 1/
p

N scaling of the sensitivity of
SRT applied on N noninteracting particles, the state preparation stage should involve
the generation of nonclassical multipartite entangled states (such as spin squeezed
states) [172–178]. Here we present numerical evidence that suggests that one can
overcome this scaling by employing classical operations at the initial and final stages
of the sequence only.

In Sec. II we describe our model and discuss the formalism, while Sec. III gives an
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overview of the results of SRT applied to non decaying or independently decaying atoms.
We introduce PRT in Sec. IV and elaborate on our choice of rotations. We also detail
the method applied to simple interacting systems comprised of two atoms and three
atoms in a triangular geometry. The main body of numerical results and analytical
considerations for larger systems is presented in Sec. V, where chains of many atoms
are considered, scaling laws are investigated and results for the fundamental cubic
unit cell are presented. We conclude in Sec. VI.

7.2 Model

Our model assumes N identical two-level atoms with levels |gi and |ei separated by an
energy of ~!

0

(transition wavelength �
0

) in a geometry defined by the position vectors
{ri} for i = 1, ...N . For each i, operations on the corresponding two-dimensional
Hilbert space are written in terms of the Pauli matrices �x,y,z

i and corresponding
ladder operators �±

i connected via

�x
i = �+

i + ��
i (7.1a)

�y
i = �i(�+

i � ��
i ) (7.1b)

�z
i = �+

i �
�
i � ��

i �
+

i . (7.1c)

Rotations about an axis µ are defined as

R(j)
µ ['] = exp

⇣
i'�µ

j /2
⌘

, (7.2)

where µ 2 {x, y, z}. The coupling of the system to the common bath represented by the
surrounding electromagnetic vacuum results in i) irreversible dynamics characterized
by independent decay channels with rates �ii ⌘ � as well as cooperative decay channels
with rates �ij (for atom pair {i, j}) and ii) dipole-dipole interactions through the
exchange of virtual photons characterized by the frequency shifts ⌦ij . Assuming
identical dipole moments for all atoms, we can write this explicitly [144] as

⌦ij =
3�

4
G(k

0

rij) (7.3a)

�ij =
3�

2
F (k

0

rij) (7.3b)

for two atoms separated by a distance of rij . With the notations ⇠ = k
0

rij (with
the wavenumber k

0

= 2⇡/�
0

) for the normalized separation and ↵ = cos ✓ =
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(rij · µ) /|rij ||µ|, one can put down the two functions

F (⇠) =
�
1 � ↵2

� sin ⇠

⇠

+
�
1 � 3↵2

�✓cos ⇠

⇠2
� sin ⇠

⇠3

◆
,

(7.4a)

G (⇠) = � �1 � ↵2

� cos ⇠

⇠

+
�
1 � 3↵2

�✓sin ⇠

⇠2
+

cos ⇠

⇠3

◆
.

(7.4b)

We follow the evolution of the system both analytically and numerically in the
framework of the master equation

@⇢

@t
= i[⇢, H] + L[⇢]. (7.5)

The unitary dynamics of the system is described by the Hamiltonian

H =
!

2

X
i

�z
i +

X
i 6=j

⌦ij �
+

i �
�
j (7.6)

with ! = !
0

� !l, where !l is a laser reference frequency. The dissipative dynamics
can be written in (a nondiagonal) Lindblad form

L[⇢] =
1

2

X
i,j

�ij

h
2��

i ⇢ �
+

j � �+

i �
�
j ⇢� ⇢ �+

i �
�
j

i
. (7.7)

7.3 Standard Ramsey Interferometry

Let us review some fundamental aspects of a typical procedure in spectroscopic
experiments, i.e., the Ramsey method of separated oscillatory fields [64]. As illustrated
in fig. 7.1, the method consists of preparing an ensemble of spins in the ground state
at time ti such that their collective population Sz =

P
i �

z
i /2 starts at a value of

hSzi = �N/2. A preparatory Ramsey pulse, applied between ti and t = 0, rotates the
state around the y-direction to achieve an alignment of the collective dipole with the
x-axis. This is realized by applying a laser that is quasi resonant with the atomic
transition with a Rabi frequency � for the time ti � t

0

such that the pulse areaR t
i

t0
�(t0) dt0 ⇡ ⇡/2. As a simplification we assume that ⌦ij , �ij ⌧ � such that no

population redistribution among the atoms can occur during the pulse. Typically, for
level shifts and decay rates on the order of MHz, a Rabi frequency in the GHz regime
or more would ensure that this approximation is valid for laser pulses with a duration
in the realm of ns. In the next step, the ensemble is allowed to evolve freely for what
we refer to as ’interrogation time’ ⌧ . Note that, depending on the geometry of the
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Figure 7.1: Standard Ramsey metrology. The ensemble of N spins starts with all
spins down in a collective coherent pure spin state on the surface of
the collective Bloch sphere (radius N/2). The first ⇡/2 pulse aligns the
average collective dipole along the x axis and free evolution is allowed.
After the interrogation time ⌧ , another ⇡/2 pulse follows which attempts
to align the state with the excited state and fails by an angle that depends
on the accumulated phase during free evolution as well as on the total
decay of the collective state. The detected signal to be analyzed is a
measure of population inversion.

excitation scheme (whether the laser comes from the side or propagates through the
ensemble) the signal will show oscillations in time either at laser-atom detuning !
or at the natural frequency !

0

. The next step is the same as the first one, where a
second ⇡/2 pulse rotates the collective state around the y-axis. At the end, the signal
to be extracted is the population inversion as a function of the scanned laser detuning.
Analysis of this signal gives the sensitivity as a figure of merit in metrology

�! = min


�Sz(!, ⌧)

|@!hSzi(!, ⌧)|
�

, (7.8)

where the minimization is performed with respect to ! and Sz =
P

i �
z
i is the detected

signal, while (�Sz)2 =
D
(Sz)2

E
� hSzi2 refers to its rms deviation.

To start with, we assume independent systems (�ij = 0 and ⌦ij = 0 for i 6= j). The
operations to be applied on the density matrix ⇢ at the times of the Ramsey pulses are

R
1

= R
2

=
O

j

R(j)
y [⇡/2]. (7.9)

It is easy to find the optimal sensitivity as a minimization over ! as

[�!]
indep

= min

"p
e�⌧ � cos2(!⌧)p
N |⌧ · sin(!⌧)|

#
=

e�⌧/2

⌧
p

N
. (7.10)

Notice that, for nondecaying atomic excitations, the method allows for a perfect
accuracy,. However, in the presence of decay, an optimal interrogation time ⌧

opt

= 2/�
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Figure 7.2: Phase-spread operation. Redesign of the first Ramsey pulse to include,
in addition to the initial ⇡/2 pulse, rotations of the individual spins with
di↵erent angles such that the resulting overall dipole moment vanishes.
Notice that the last Bloch sphere has a radius 1/2, corresponding to
single spins.

suggests itself, where the corresponding optimal sensitivity is given by

[�!]opt

indep

=
� · e

2
p

N
. (7.11)

Thus, it becomes obvious that, given the atomic species (which determines �) one
can improve the accuracy by an increase of the sample size only. Yet, due to the finite
available volume, this would imply an increase of density which causes the assumption
that the atoms are independent to break down. In the next section we analyze this
high density limit where we observe that the collective behaviour can be exploited to
reduce the e↵ective � appearing in eq. (7.11) instead.

7.4 Protective Ramsey Technique

To counteract the e↵ect of the collective coupling to the vacuum modes, it has been
proposed [169] to make use of a generalized Ramsey sequence (as illustrated in fig. 7.2).
In contrast to SRT, the generalized PRT contains extra rotations in conjunction with
the Ramsey pulses that are intended to drive the spin system into states that are
protected from the environmental decoherence. In a first step, one applies

R(m)

1

=
O

j

R(j)
z

h
'(m)

j

i
· R(j)

y

h⇡
2

i
, (7.12)

where the state of a particular atom j is rotated around the z-direction with the angle

'(m)

j = 2⇡m
j � 1

N
. (7.13)
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The idea behind this choice of angles is to drive the system into a state which
exhibits a vanishing dipole moment. This can be achieved by rotating the spins in
the xy-plane in bN/2c distinct ways indexed by m = 1, ...bN/2c (where bN/2c is the
first integer before N/2). The protection of the state is targeted at the period of its
free evolution and in the final step, before the second Ramsey pulse, the state has to
be brought back to the surface of the Bloch sphere to ensure a large contrast in the
signal. This is accounted for by a reversal of the phase spread operation, i.e.,

R(m)

2

=
O

j

R(j)
y

h⇡
2

i
· R(j)

z

h
�'(m)

j

i
. (7.14)

As stated previously, at time t = 0, for any set of '(m)

j , the system is in a state of
zero average collective spin. At an intuitive level this choice comes from the observation
that, for small atom-atom separations, collective states of higher symmetry are shorter
lived (culminating at zero separation with the maximally symmetric superradiant
Dicke state [140] of rate N�). Let us now try to sketch how asymmetric states can be
built by imposing orthogonality of a phase-spread state

| 'i =
NO

j=1

1p
2

h
|gi +

�
ei'
�
(j�1) |ei

i
, (7.15)

to the multitude of symmetric states of the system. It is straight-forward to see that

hW | 'i =
NX

i=1

�
ei'
�
(j�1)

, (7.16)

where
|W i = (|egg . . . i + |geg . . . i + · · · + |g . . . gei) /

p
N, (7.17)

the so-called W -state, which is the fully symmetric state of a single excitation dis-
tributed equally among N atoms. Imposing orthogonality, i.e., hW | 'i = 0 we find
' = 2⇡/N . Geometrically, this corresponds to a division of the unit circle into N
pieces of angle 2⇡/N , which when added up yields a trivial vector sum of zero. Gener-
alizing this concept to higher energy states, where

��w(n)

↵
is the symmetric state of n

excitations, gives us

D
w(n)| '

E
=

MX
j=1

p(j, n)
�
ei'
�
(j�1)

= 0 (7.18)

with p(j, n) being the integral partition of the number j comprised of n summands
and M = n (N � (n + 1)/2) + 1. Unfortunately, p(j, n) is a fractal function and thus,
Equation (7.18) cannot be solved for a general number of atoms and excitations, yet
any concrete number gives the same result as above, i.e., ' = 2⇡/N . Hence, we see
that for any symmetrically coupled system of N atoms the choice ' = 2⇡/N results
in a zero-occupation of the symmetric states.
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Figure 7.3: Energy levels and decay channels for three equidistant atoms. Results
of the diagonalization of both the Hamiltonian and the Liouvillian for
three atoms in an equidistant triangle configuration. The dipole-dipole
shifts of levels are depicted with the corresponding decay channels and
rates. Further details can be found in Ref. [144].

We will now look at systems of small atom numbers where the protected states

|p(m)

N i = R(m)

1

|Gi, with |Gi being the ground state, can be readily expressed in both
the collective and uncoupled bases. For two atoms the ’protected’ state is unique
(m = 1) and is simply the asymmetric state

|p(1)

2

i =
1p
2
(|gei � |egi) = |Ai . (7.19)

Observe that the transformation that diagonalizes the Hamiltonian automatically
renders the Liouvillian in diagonal form. Denoting the mutual decay rate by �

12

= �,
two decay channels with �A = � � � and �S = � + � are obtained. For closely
spaced atoms, � can reach values close to � such that �A ⌧ � and the state |Ai
can be protected from decoherence very well. Since analytical and numerical results
for the two atom case are presented in Ref. [169], we will only stress one conclusion
that emerges from this analysis, i.e., even for moderate distances the time for which
the optimal sensitivity is obtained roughly scales as 2/�A. This indicates that the
evolution of the system is mainly within the protected subspace, a claim that will be
investigated further in the next section.

For three atoms there is still only one choice of m = 1. However, the resulting state
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is somewhat more complicated in both coupled and uncoupled bases, i.e.,
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(7.20)

Above we have used the short form for the tensor products in the uncoupled basis
and an additional index in the coupled basis. The complete label of a state (di↵erent
from the ones with J = N/2) in the coupled basis as used here is |J, M,↵i, where
as usual 0  J  N/2 and |M |  J . In the symmetric subspace, characterized by
J = N/2 (with states on the surface of the Bloch sphere), there are N + 1 states. The
additional index ↵ is needed in order to distinguish among degenerate states inside the
Bloch sphere (note that there is a certain unitary freedom in how the change of basis
is performed, i.e., in how the collective degenerate states are defined). These other
states that lie inside the Bloch sphere (equal in number to 2N � (N + 1)), we loosely
dub asymmetric states. For the three-particle example, as seen in fig. 7.3, states in the
middle belong to the symmetric subspace. There are four such states with maximal
J = 3/2, and therefore 23 � 4 = 4 asymmetric states inside the sphere. Since there are
only two combinations of J = 1/2 and M = ±1/2, the remaining states are degenerate
and therefore distinguished by an additional index ↵ = 1, 2. These asymmetric state
are depicted in fig. 7.3 on the sides and correspond to |1/2, ±1/2,↵i in the expression

for |p(1)

3

i.
It is however obvious that the number of asymmetric states grows drastically with

N and so does the degeneracy. Consequently, the expressions for the protected states
become vastly more complicated for larger N making it necessary to tackle the problem
numerically.

For atoms in an equidistant triangle configuration where all mutual decay rates and
couplings are equal and specified by � and ⌦, respectively, one can again simply use
the transformation that diagonalizes the Hamiltonian to diagonalize the Liouvillian
as well. The resulting states with their corresponding decay rates are depicted in

fig. 7.3. Thee phase-spread transformation that leads to the protected state |p(1)

3

i
simply ensures that the system’s evolution mostly runs through the states on the side,
characterized by smaller decay rates �A.
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7.5 Larger Systems

We are now in the position to extend our investigations to larger systems in various
configurations. First, we show results for six atoms in a chain, where the separation
is varied and the scan over di↵erent rotations (i.e., over all possible sets of 'm

j ) is
performed. We then explain the obtained results by taking a close look at the collective
decay properties as derived from a diagonalization of the Liouvillian and find scaling
laws for the characteristic timescale of the most protected subspace consistent with the
numerical results. Then, we show that the performance of PRT can beat the typical
1/

p
N scaling. Finally, we extend our numerics to a cube configuration of eight atoms

which should be the building block for understanding the application of this method
to dense 3D lattices.

7.5.1 1D Chain Configuration

To begin with, we consider a linear chain of six atoms separated by various lattice
constants a and subject to first SRT and than to PRT. We numerically compute the
minimum sensitivity as a function of ⌧ and scan over all possible rotation indexes m.
The results are plotted in fig. 7.4 for separations of 0.2�

0

, 0.3�
0

and for the magic
wavelength. The obtained curves are compared to the independent atom case (shown
in black in all plots).

As seen in fig. 7.4a and fig. 7.4b, for distances smaller than �
0

/2, there is at least
one m for which the corresponding PRT method gives results better than SRT. More
surprising and promising at the same time, the optimal PRT performs even better
than the independent atom case. The immediate conclusion is that one can use such
techniques to turn cooperative decay into an advantage instead of treating it as a
detrimental e↵ect. For distances larger than �

0

/2 (as illustrated in fig. 7.4c), the SRT
beats any PRT we used for a fairly simple reason. At these distances the symmetric
states are subradiant. Therefore, SRT naturally leads the system to subspaces which
are more protected from the environment.

From fig. 7.4a and fig. 7.4b we notice that the m = 3 rotation performs best. More
generally, as seen in the following subsections, the optimal PRT scheme seems to
always be the one characterized by a maximum m = bN/2c. Such rotations e↵ectively
create non-radiative subunits of atom pairs within the chain (exact for even N and an
approximation for odd N where one atom is unpaired). This seems to agree with the
mechanism described in Ref. [185] as well.

7.5.2 Diagonal Decay Channels – Scaling Laws

A key property for the improved performance of dense ensembles under PRT is the
occurrence of subradiant states. To get some physical insight into the behaviour of
these states with distance and particle number, we perform a diagonalization of the
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Figure 7.4: Numerical investigations for a 1D chain of six atoms Numerical results
for the sensitivity as a function of ⌧ for a 1D chain of six atoms separated
by a = 0.2�

0

in a), by a = 0.3�
0

in b) and by half of the magic wavelength
in c). The di↵erent curves correspond to independent decay (solid line),
SRT with m = 0 (empty squares) and PRT with m = 1 (empty triangles),
m = 2 (filled squares) and m = 3 (filled triangles). In c) the independent
decay overlaps with the curve for m = 2.

decay matrix for N particles in a linear chain configuration. This is done by a unitary
matrix T , such that

� = T D
�

T�1, (7.21)

where D
�

is a diagonal matrix containing the eigenvalues of the decay rate matrix
[�ij ], which we label �i for i = 1, ...N . With this, we can write the connection to
collective ladder operators as

�±
i =:

NX
k=1

Tik⇧±
k . (7.22)

Using eq. (7.22) in eq. (7.7) we obtain a diagonal form for the Liouvillian that shows
a breakdown of the decay process into N di↵erent channels, i.e.,

L[⇢] =
NX

k=1

�k

2
(2⇧�

k ⇢⇧+

k � ⇧+

k ⇧�
k ⇢� ⇢⇧+

k ⇧�
k ). (7.23)
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Figure 7.5: Subradiant behaviour for increasing N. a) Minimum decay rate (or eigen-
value) obtained from [�ij ] with increasing atom number N in a linear
chain configuration for di↵erent spacings a. Smaller distances show a
close to exponential and drastic decrease of �

min

with increasing N . b)
Scaling of the �

min

obtained via the population accumulation method
(as detailed in the text) with and without coherent dipole-dipole energy
exchange.

After establishing a description of the decay via independent decay channels, let us
now investigate the scaling of the corresponding rates with N . Results of the numerical
diagonalization of the decay matrix [�ij ] are illustrated in fig. 7.5a for a = 0.2�

0

,
a = 0.35�

0

and a = 0.45�
0

. There, the logarithm of the minimum eigenvalue �
min

(normalized with respect to �) is plotted against N . A closer and closer to exponential
scaling emerges as a/�

0

becomes smaller.

Having identified that there are decay channels with exponentially close to zero
rates (with increasing N), the natural question is: does the system end up in such
subspaces characterized by almost perfect protection from the environment? To this
end, we simulate population accumulation dynamics, where the system is initialized
in the fully inverted state and the population of the ground state is monitored. It is
safe to assume that in the long time limit all but the channel with the very lowest
decay rate will have damped out fully. Therefore, the population of the ground state
will have the following approximate analytical form for large times,

pG(t) ⇡ 1 � e��mint. (7.24)

The results are plotted in fig. 7.5b as green circles, where ⌦ij = 0 is assumed. The
values obtained perfectly overlap with the predicted values from fig. 7.5a (green circles).
However, we have also investigated the e↵ect of coherent dipole-dipole energy exchange
on such dynamics and found the red squares line in fig. 7.5b. In the realistic case
where ⌦ij 6= 0, the Hamiltonian and Liouvillian cannot be diagonalized simultaneously
and the system does not evolve to the fully protected subspace but to a combination
of slowly decaying subspaces. The resulting scaling with increasing N is however still
quite steep and close to an exponential.
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Figure 7.6: Scaling laws. a) Scaling of the extrapolated inverse timescale 2/⌧
opt

with increasing N (squares) compared to the theoretical scaling of �
min

(circles). b) Scaling of the minimum sensitivity (times 2
p

N/e) obtained
via PRT with particle number (always for the PRT with m = bN/2c).
The circles show the normal scaling of SRT on independent atoms
2
p

N/e·�! = 1. For an even particle number, the rotation with m = N/2
corresponds to a configuration where the system is composed of non-
radiative atom pairs. For odd particle number, there is one unpaired
spin and the resulting sensitivity is roughly the one obtained for N � 1
atoms (except for small systems where the e↵ect of the unpaired atom is
substantial).

7.5.3 Optimal Sensitivity via Protected Method – Scaling Laws

We are now in the position to extract scaling laws for the minimum sensitivity with
atom number from numerical investigations of PRT on 1D lattices. First, we extract
the optimal interrogation times ⌧

opt

from the sensitivity curves such as those plotted in
fig. 7.4. A simple fit of 2/⌧

opt

with the minimum decay rate predicted theoretically for
a = 0.35�

0

(as read from fig. 7.5a shows a good agreement with increasing N (except
for N = 3 for PRT with m = 1). The results are shown in fig. 7.6a. The conclusion
is that, for long interrogation times, the system subjected to PRT is indeed mainly
restricted to a protected subspace governed by the smallest theoretically predicted
decay rate.

More importantly, we have analyzed the behaviour of the normalized optimal
sensitivity (2

p
N/e)�! with increasing N and compared it to the typical scaling for
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Figure 7.7: Numerical investigations for the cube configuration. a) Frequency sensit-
ivity for the cube configuration in a magic wavelength lattice. b) Weighed
average of decay rates with corresponding populations for SRT compared
to PRT as a function of interatomic distance in a cube. As obvious from
the plot, PRT outperforms SRT for distances roughly less than �

0

/2.

independently decaying atoms (shown as a constant function valued 1 in fig. 7.6b). The
immediate conclusion is that PRT does indeed beat the usual scaling using independent
ensembles with atoms in coherent spin states and suggests that even the improved
scaling introduced by the use of spin squeezed states might be outperformed. However,
extended numerical investigations are needed at this point and such an extrapolation
will be deferred to a future publication. The chains of even and odd number behave
di↵erently, owing to the aforementioned fact that the PRT with m = bN/2c is the
optimal one for a = 0.35�

0

. For even N the sensitivity outperforms the standard one as
soon as N > 1 given that every two neighbouring atoms are paired into non-radiative
cells when PRT is applied. For odd N there is an extra unpaired dipole that seems to
strongly influence the results when N is small and will lead to the same �! (as for the
previous even integer) for large N .

7.5.4 3D Cube Configuration

As a further step towards a generalized view of a 3D configuration this section lays
out the properties of a unit cell of a cubic lattice, where eight atoms reside in the
corners of a cube. Here, the atoms are trapped equidistantly (lattice constant a), while
their dipoles point into the direction that is transverse to the propagation direction of
the excitation and readout laser pulses. Thus, di↵erent coupling strengths emerge,
whereas the dominating contribution is still the nearest-neighbour distance with the
dipole moment and the vector connecting the respective pairs drawing an angle of
✓ = ⇡/2. Note that symmetry renders all eight particles equivalent here.

Since, in such a configuration, a direct laser excitation of all eight atoms with
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the same phase, is not possible, this setup o↵ers a solid testing ground for a quasi-
automatic phase imprinting due to finite distances. In a typical situation an excitation
pulse would reach one face of the cube, i.e., four atoms, with some phase ', while the
other four atoms would receive a phase of '+ ka, where k is the laser’s wavenumber
and a denotes the length of the cube, as mentioned above. This, of course, can
become arbitrarily complicated, if one allows for the cube to be addressed from any
angle, where then each atom could obtain a distinct phase, simply because of the free
propagation of the laser pulses between them.

In fig. 7.7a we depict the minimum sensitivity as a function of time for a lattice
constant of a ⇡ 0.58�

0

, corresponding to 87Sr in a magic wavelength lattice. We
observe, that a Ramsey scheme, where every atom receives the same phase outperforms
any other phase imprinting by a landslide. This might seems a bit counter-intuitive at
first, as one is lead to assume that this situation is the standard Ramsey technique. Yet,
a closer look reveals that due to the geometrically induced implicit phase imprinting,
the above mentioned second face of the cube needs to pick up an extra phase of �ka,
so that both faces, i.e., every atom in the cubic sample, indeed possesses the same
imprinted phase. At the magic wavelength distance, the lowest order nearest-neighbour
dissipative coupling has a negative value, thus favouring as many pairs of equal phase
as possible. As mentioned before, the majority of the couplings is constituted by
nearest neighbour pairs, but there are also couplings in the planar and cubic diagonal,
which becomes quite evident when looking at the sensitivity for an alternating phase
distribution, i.e., every nearest neighbour pair is separated by a phase of exactly ⇡.
Here, a trade o↵ between the next-neighbour and diagonal couplings can be observed
as the closest couplings decrease the sensitivity due to a negative sign and a phase
di↵erence of ⇡ while the diagonal ones, which are also negative in sign, yet possess no
phase di↵erence, increase the sensitivity.

Finally, the SRT sensitivity is obtained by including the implicit phase imprinting
caused by a laser pulse that hits one face of the cube first, propagates further and
hits the second face with an extra phase of ka. At magic wavelength distance this
amounts to a phase of approximately 1.16⇡, which clearly yields the worst sensitivity
as the contributions from the pairs with an unfavourable overall sign outweigh the
advantageous ones.

To sum up, for the cubic unit cell, where an implicit geometric phase imprinting has
been reversed, it is the blue line (filled triangles) of fig. 7.7a an experimental setup
should strive for. This line competes against the SRT line (red, empty squares), which
carries the geometrically induced phase di↵erence.

To investigate this elementary building block a little further, fig. 7.7b illustrates
the weighted average lifetimes of the initial Ramsey state as a function of the lattice
constant for various phase distributions. The average lifetimes are calculated as

�
av

=
2

NX
j=1

�j |h j | 0

i|2 . (7.25)
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For very small lattice constants we observe that the PRT yields the lowest average
lifetime, while for larger distances having no phase di↵erence between the individual
atoms gives better results. Now, this does not necessarily mean that SRT beats PRT
at those distances, since, as discussed above, SRT su↵ers from an implicit imprinting
of a phase induced by the sample’s geometry.

7.6 Conclusions

Despite the common expectation that pairwise interactions and collective dynamics
will introduce shifts and noise to ultrahigh precision spectroscopy setups in dense
ensembles, we have shown, that using appropriate intermediate preparation steps,
these e↵ects cannot only be minimized but sometimes even used to improve the signal
to noise ratio for Ramsey type measurements. Transferring excitation to the so-called
protected subspaces prevents errors which cannot be corrected by common rephasing
pulse schemes. An important example is the prevention of superradiant decay by a
population transfer to subradiant states. Surprisingly, the lifetime of these subradiant
states grows very fast with particle density and number, which is reflected in the
scaling of both the minimum sensitivity and the maximally allowed interrogation
times. While the main focus of this paper is the case of ensembles of cold atoms
coupled via dipole-dipole interaction through the electromagnetic vacuum, the idea of
using protected subspaces to improve precision spectroscopy can be extended to more
general cases of engineered baths. Enhancing the interaction of atoms by coupling to a
highly confined field mode [181, 197] induces long range mutual interactions between
any pair of atoms yielding even stronger e↵ects. Recently, analogous implementations
using NV-centres or superconducting qubits coupled to CPW transmission lines or
resonators showed surprisingly strong e↵ects [183,184,198,199].

In principle, our method in the most general form requires single particle control of
the excitation phase. Luckily, in many cases of experimental realizations of such a
generalized Ramsey method the required phase pattern has a lot of regularity and
symmetries, which can be used to simplify the procedure. As a first guess one can
think of an automatic phase imprinting achieved by the sample’s geometry, where
the phase front of a plane wave laser hits each element of a regular lattice with a
di↵erent phase exp(ikri), with k being the wavenumber of the laser and ri denoting the
positions of the atoms. Addressing a linear chain transversally at right angle from the
side leads to an equal phase for all particles. By tilting the laser and thus introducing
an angle ↵ between the laser’s propagation direction and the elongation of the chain
the relative excitation phase can be tuned as 'j = k(j � 1)a · cos(↵). Alternatively, a
magnetic field gradient applied for a prescribed time, resulting in a spatial gradient of
the di↵erence in splitting of |gi and |ei among the individual two-level emitters, will
facilitate the accumulation of a relative phase between the atoms much in the form
desired in our scheme. Phase gradients could also be engineered by the di↵erential
light shift of o↵-resonant laser fields. In principle, these phases can be even tailored
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in 3D. Finally, an implementation in the framework of engineered baths, e.g., with
superconducting qubits coupled to CPW transmission lines, could also be realized.
Here one has indeed individual spin control. A more thorough discussion on practical
considerations has been provided in Ref. [169].
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In this article, where the larger part of calculations and analysis was performed by
David Plankensteiner, we investigate the possibility of addressing subradiant states
directly, instead of preparing superradiant ones and then changing the phases of their
coherences. We could show that, given an external field or engineered phases in the
excitation itself, this is in fact possible. My contribution to this work mainly lies in
the calculation and interpretation of the Depth of Entanglement results. The article
was published in Scientific Reports on November 9th, 2015 [200].

Abstract

Inherent binary or collective interactions in ensembles of quantum emitters induce
a spread in the energy and lifetime of their eigenstates. While this typically causes
fast decay and dephasing, in many cases certain special entangled collective states
with minimal decay can be found, which possess ideal properties for spectroscopy,
precision measurements or information storage. We show that for a specific choice
of laser frequency, power and geometry or a suitable configuration of control fields
one can e�ciently prepare these states. We demonstrate this by studying preparation
schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled
emitters. The prepared state fidelity and its entanglement depth is further improved
via spatial excitation phase engineering or tailored magnetic fields.

8.1 Introduction

Ensembles of e↵ective two-level quantum emitters consisting of single atoms, ions, or
defects in solids are employed ubiquitously in quantum optics and quantum informa-
tion [201]. They are the basis for precision spectroscopy or atomic clock setups, as well
as for experiments testing fundamental concepts of quantum physics or implementa-
tions of the strong coupling cavity QED (quantum electrodynamics) regime [202, 203].
In the absence of direct particle-particle interactions, larger ensembles allow for faster,
more precise measurements [173] via a scaling of the e↵ective single photon to matter
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coupling strength g by a factor
p

N (with system size N) and a reduction of the
quantum projection noise (by 1/

p
N) [175,204].

For any precise measurement one has to externally prepare, control and measure
the particle dynamics. Hence, the emitters are almost unavoidably coupled to their
environment. A suitable theoretical framework to model such experiments is open
system dynamics with a coupling to a fluctuating thermal bath. At optical frequencies
this can often be approximated by the zero e↵ective temperature electromagnetic
vacuum field [139, 205]. Still, extra perturbations by a thermal environment and
background gas collisions cannot be avoided.

In a laboratory experiment the particles need to be confined in a finite spatial
volume that can be addressed by laser beams. Thus, increasing particle numbers
will lead to higher densities, where direct particle-particle interactions as well as
environmentally induced collective decoherence can no longer be neglected. For
optical transition frequencies a critical density is conventionally assumed at the point
where the average particle separation is of the order of an optical wavelength [206].
Above this limit vacuum fluctuations tend to become uncorrelated and decay becomes
independent. However, recent calculations have shown that collective states can exhibit
superradiance and subradiance even at much larger distances [156] as long as the
bandwidth of the emission is small enough.

In many typical configurations and in optical lattices in particular, the particle-
particle interaction is dominated by binary dipole-dipole couplings, with its real
part inducing energy shifts and its imaginary part being responsible for collective
decay [136,207]. Generally, this interaction is associated with dephasing and decay.
However, recently it has been found that under special conditions also the opposite
can be the case and these interactions can lead to a synchronization [208] or even a
blockade of the decay [209].

Oftentimes it is assumed that while such states exist, they cannot be prepared
by lasers as they are strongly decoupled from the radiation fields. However, it was
recently proposed that individual instead of overall addressing of the atoms can
push the many particle system to evolve towards subspaces protected from decay or
dephasing [169]. When applied to Ramsey spectroscopy such states have been shown
to exhibit frequency sensitivities superior even to those obtained from non-interacting
ensembles [187]. However, apart from special cases with an optimal lattice size and
excitation angle, it is not so obvious how to implement such precise a control.

In this work we highlight the surprising fact that interaction induced level shifts
can be used to aid in preparing such states. In many cases the magnitude of the shifts
a state experiences and its lifetime are tightly connected allowing one to identify and
address interesting states via energy resolution. As a generic ensemble we particularize
to a 1D regular chain of quantum emitters coupled by dipole-dipole interactions with
a tunable magnitude (by varying the interparticle separation). Collective coupling to
the vacuum leads to the occurrence of subradiant as well as superradiant excitonic
states [156]. In particular, the subradiant states should prove extremely useful
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Figure 8.1: Selective state preparation procedure. a) A chain of N closely spaced
quantum emitters (separation a with ka ⌧ 1, k being the laser wave
number) are individually driven with a set of pumps {⌘m

j }. b) The
lasers are turned on for a time T , optimized such that an e↵ective
⇡-pulse into the desired subradiant target state is achieved. c) Level
structure for the N systems where the CN

n -fold degeneracy of a given
n-excitation manifold is lifted by the dipole-dipole interactions. The
target states are then reached by energy resolution (adjusting the laser
frequency) and symmetry (choosing the proper m). d) Scaling of the
decay rates of energetically ordered collective states starting from the
ground state (state index 1) up to the single- and double-excitation
manifolds for 6 particles at a distance of a = 0.02�

0

. The arrows identify
the decay rates for the lowest energy states in the single (A) and double
(B) excitation manifolds. e) Numerical results of the time evolution of
the target state population for N = 6 and a = 0.02�

0

during and after
the excitation pulse. Near unity population is achieved for both example
states A (where we used ⌘ = 0.53 �) and B (for ⌘ = 2.44 �) followed by
a subradiant evolution after the pulse time T shown in contrast to the
independent decay with a rate � (dashed line).

for quantum information as well as metrology applications as they exhibit robust,
multipartite quantum correlations. As mentioned above, the atoms’ interactions
provide a first handle for target state selection as they lead to energy resolved collective
states. Furthermore, using a narrow bandwidth laser excitation matched to the target
states both in energy and symmetry allows for a selective population transfer from
the ground state via an e↵ective Rabi ⇡-pulse.

In many cases, however, the required phase structure of the target state is not
compatible with the excitation laser phase so that only a very weak coupling can be
achieved. On the other hand, increasing the laser power reduces spectral selectivity by
an unwanted addressing of o↵-resonant but strongly coupled states. Hence, to address
a larger range of states of practical interest, we also propose and analytically study
new methods of phase imprinting via a weak spatial magnetic field gradient. The
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small relative phase shifts increase the e↵ective coupling to groups of emitters via a
nonuniform phase distribution. With this method any state may acquire a finite laser
coupling to the ground state via the magnetically induced level shifts resulting in an
e�cient population transfer with a minimal compromise on lifetime.

The considered setup is a chain (see fig. 8.1a) of N identical two-level systems (TLS)
with levels |gi and |ei separated by a frequency of !

0

(transition wavelength �
0

) in a
geometry defined by the position vectors {ri} for i = 1, ...N . For each i, operations
on the corresponding two-dimensional Hilbert space are written in terms of the
Pauli matrices �x,y,z

i and raising/lowering operators �±
i connected via �x

i = �+

i + ��
i ,

�y
i = �i(�+

i � ��
i ) and �z

i = �+

i �
�
i � ��

i �
+

i . The complete Hamiltonian describing
the coherent dynamics is

H = H
0

+ H
dip

= !
0

X
i

�+

i �
�
i +

X
i 6=j

⌦ij�
+

i �
�
j , (8.1)

where H
0

is the free Hamiltonian and has degenerate energy levels (degeneracy
CN

n = N !/(N � n)!n! for level n) ranging from 0 for the ground state to N!
0

for the
highest excited state. The second term H

dip

describes interactions between pairs of
TLS which can be induced either by an engineered bath (such as a common, fast
evolving optical cavity field) or by the inherent electromagnetic vacuum. We denote
the couplings between emitters i and j by ⌦ij and particularize to the case of a
free-space one dimensional equidistant chain of TLS with small interparticle distances
a such that a ⌧ �

0

(as depicted in fig. 8.1a).

For the sake of simplicity, we use dipole moments perpendicular to the chain for
all numerical computations. To a good approximation, in the limit of k

0

a ⌧ 1, the
nearest-neighbour (NN) assumption can be used (such that ⌦ij = ⌦�ij±1

) and exact
solutions in the single-excitation manifold can be found [210]. Within this subspace
and approximation, the Hamiltonian assumes the form of a tridiagonal symmetric
Toeplitz matrix with !

0

on the diagonal and ⌦ above and below the diagonal. The
solutions are readily available [211] with eigenvalues !

0

+ ✏m for an index m running
from 1 to N , where ✏m = 2⌦ cos [⇡m/(N + 1)] are the dipole-induced energy shifts.
The corresponding eigenstates of the Hamiltonian are then

|mi =
X

j

fm
j �

+

j |Gi , with fm
j =

r
2

N + 1
sin

✓
⇡mj

N + 1

◆
, (8.2)

where we used |Gi = |gi⌦N .

Spontaneous decay via a coupling to the free radiation modes in the evolution of
the system can be included in a generalized Lindblad form [139],

L[⇢] =
1

2

X
i,j

�ij

⇣
2��

i ⇢ �
+

j � �+

i �
�
j ⇢� ⇢ �+

i �
�
j

⌘
, (8.3)

where the �ij denote collective damping rates arising from the coupling to a common
radiation field. These rates also strongly depend on the atomic distances a with
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two prominent limiting cases of �ij(a ! 1) = ��ij (independent emitters limit) and
�ij(a ! 0) = � (the Dicke limit [140]). In general, one can perform a transformation
of the Liouvillian into a new basis by diagonalizing the �ij matrix. This procedure
leads to a decomposition into N independent decay channels with both superradiant
(> �) and subradiant (robust) decay rates (< �) [187]. Note, however, that the states
corresponding to these channels generally do not coincide with energy eigenstates
of the Hamiltonian, so that we cannot reduce the system dynamics to simple rate
equations.

8.2 Results

8.2.1 Selective State Preparation

Tailored coherent excitation. As mentioned above, our dipole coupled systems
possess states with a large range of radiative lifetimes and energy shifts. Depending
on the desired application particular states can be highly preferable over others. In
a first straightforward approach we now illustrate that in principle it is possible to
access a desired collective state simply by a selective coherent driving with a properly
chosen amplitude and phase for each TLS. This is described by the Hamiltonian

Hm =
X

j

⌘m
j (�+

j e�i!
l

t + ��
j ei!

l

t), (8.4)

with a suitably chosen set of ⌘m
j . For a targeted eigenstate in the single-excitation

manifold, some analytical insight on how to choose these amplitudes can be gathered
from the state’s symmetry. For energy eigenstates this can be found quite reliably
within the NN approximation [179]. In an equidistant finite chain our calculation
suggests the following choice of driving fields at laser frequency !l,

⌘m
j = ⌘ sin

✓
⇡mj

N + 1

◆
, (8.5)

chosen to fit the symmetry of a target state |mi.
The selectivity of the excitation process can be further improved by an energetically

resolved excitation of a given state |mi by a proper choice of the laser frequency
!l = !

0

+ ✏m and its bandwidth. This is possible due to the interaction induced level
splitting from H

dip

(as depicted in fig. 8.1c). Indeed, in perturbation theory and in a
frame rotating at !l the evolution of the system starting from the ground state up to
a normalization factor leads to

e�iH
m

t |Gi ' |Gi � i⌘t |mi . (8.6)

The success of the corresponding process is illustrated in the sequence of plots in
fig. 8.1, where the |m = Ni state with n = 1 is considered (target state A) and accessed
via the combination ⌘N

j of pumps lasting for a duration T .
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Numerical simulations were performed on a six-atom chain with driving strength
⌘ = 0.53 � at an interatomic separation of a = 0.02�

0

. The time for which the pumps
are switched on is T = 1.58 ��1 which is considerably shorter than the time scale
governed by the decay rate of 0.0009 � of the target state. The resulting dynamic is an
e↵ective ⇡-pulse (e�ciency of 99.94%) flipping the population into the state |m = Ni
followed by an extremely slow decay, indicating the robustness of the target state (as
seen in curve A of fig. 8.1e).

It is, of course, desirable to target higher excitation manifolds as well. In the absence
of analytical expressions or good approximations for the target states, we employ
phases that yield maximal asymmetry, i.e., ⌘̄j = ⌘(�1)j for any j = 1, ..., N . Such a
driving can be expected to address collective states, where the fields emitted by any two
neighbouring particles interfere destructively [209] (similar to a previously investigated
mechanism [169]). Numerical simulations show that the resulting collective states
indeed exhibit the lowest energy shifts of the targeted manifold and can be expected
to be long lived. The resonance condition for a specific state | i within the manifold
n is n!l = n!

0

+ �! , where �! = h | H
dip

| i. As an illustration, the curve B in
fig. 8.1e shows an almost perfect e�ciency (98.36%) two-photon ⇡-pulse allowing for
a population transfer to the longest-lived collective state in the second excitation
manifold of N = 6 emitters separated by a = 0.02�

0

. The chain was driven with a
strength of ⌘ = 2.44 � for a time T = 3.44 ��1, which again is significantly shorter
than the natural time scale given by the target state decay rate of 0.0402 �.

Let us add a comment on the practical implementation of such an addressing. In
typical current experimental configurations for clocks based on 1D magic wavelength
lattices [42, 212] the atoms are very close and hardly allow for an individual direct
particle addressing. One is largely limited by a quasi plane wave driving, which
typically addresses all particles with equal intensity. If the pump light is applied
perpendicularly to the trap, the evolution is governed by a symmetric Hamiltonian
H

sym

, obtained from equation (8.4) with an equal pump amplitude ⌘m
j = ⌘ for any m

and j. A laser excitation from the ground state into the state |mi is connected to the
coupling amplitude �m = hm| H

sym

|Gi = ⌘
P

i f
m
i , which yields

�m =

(
0 if m is even,p

2⌘p
N+1

cot
⇣

m⇡
2N+2

⌘
if m is odd.

(8.7)

We will refer to states with even m as dark states as they cannot be accessed by the
laser excitation and call the remaining ones bright states [209]. In the limit of large
atom numbers N � 1, it is of interest to investigate the two cases, where m ⌧ N and
m ⇠ N , for states at the top/bottom of the manifold. In the first case, the function
for the driving yields �m ⇡ ⌘

p
8N/m⇡, whereas in the other case we have �m ⇡ 0.

Note, that sometimes geometry can change this behaviour. For a 1D string of
equidistant emitters illumination at a chosen angle of incidence and polarization leads
to a designable phase gradient of the excitation amplitudes. The situation becomes
even more complex for a 3D cubic lattice, where the phases also di↵er in the di↵erent
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lattice planes. As a lucky coincidence, a perpendicular plane illumination at the clock
frequency in a magic lattice for Strontium (Sr) targets an almost dark state. This
leads to subradiance and in principle allows for a spectral resolution better than the
natural linewidth [190]. In not so favourable cases one could also think of a specific
lattice design to facilitate a tailored dark state excitation.

Radiative properties. In order to be useful resources for quantum information
applications, target states should exhibit robustness with respect to the environmental
decoherence. To identify states of minimum decay rate, we scan through the eigenstates
| ki of the Hamiltonian H = H

0

+ H
dip

(for k = 1, ..., 2N ) and compute their decay
rates � 

k

(see section Methods below). We find that generally, for a given manifold, the
energetic ranking of the states closely indicates their robustness to decay (as illustrated
by the colour-coding in fig. 8.1c) ranging from blue for subradiant states to red for
superradiant states. This is due to the fact that both radiation and energetic shifts are
strongly dependent on the symmetry of the states. In fig. 8.1d, for N = 6, we plot the
decay rates of the collective states in the first (n = 1) and second (n = 2) excitation
manifold arranged as a function of their increasing energy corresponding to the level
structure of fig. 8.1c. Superradiant states are found at the upper sides of the manifolds
while the ideal robust states lie at the bottom. In fig. 8.1d, the arrows indicate the
optimal decay rates in the single- (0.0009 �) and double-excitation manifolds (0.0402 �)
corresponding to target states A and B whose population evolution is depicted in
fig. 8.1e.

Within the single-excitation manifold, an analytical expression for the decay rate of
a state |mi can be found as �m =

P
i,j �ijfm

i fm
j . For small distances the state m = 1

(upper state) is superradiant, whereas states at the bottom of the manifold m ⇠ N
exhibit subradiant properties. In the Dicke limit where a = 0 we have �ij = � for any
i and j, and we can compute �m = 2� cot2 [m⇡/(2N + 2)]/(N + 1) for m odd and
�m = 0 for m even. Note, that in this particular limit, these are the same conditions
as for the darkness and brightness of a state. For large numbers of emitters, we recover
the expected superradiant scaling with N for the state with m = 1, i.e., �

1

⇡ 8�N/⇡2.
On the other hand, large m yield a decay rate of �m ⇡ 0 (perfect subradiance) in the
same limit.

There are two important conclusions from these results: i) since in the considered
limit the decay rate of the superradiant state |m = 1i scales with �

1

/ N , whereas
its driving is �

1

/ p
N , driving this state becomes more di�cult with increasing

atom number due to the reduced time-scale and ii) if the number of atoms is not too
large, �m will remain finite, while �m already indicates vast subradiance due to its
scaling-down with N . Hence, there are robust states that remain bright, i.e., they can
be driven directly even though the driving is not matched to their symmetry.
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8.2.2 Accessing Dark States via Magnetic Field Gradients

The direct symmetric driving with H
sym

allows access to bright states only. Given
that nearby dark states can conceivably be more robust, we now employ a progressive
level shifting mechanism that allows for a coupling between bright and dark states.
This is achieved by subjecting the ensemble to a magnetic field with a positive spatial
gradient along the chain’s direction. The increasing energy shift of the upper atomic
levels (as depicted in fig. 8.2a) plays a role similar to the individual phase imprinting
mechanism described previously. For each particle the shift of the excited level induces
a time-dependent phase proportional to the value of the magnetic field at its position.
We demonstrate the mechanism for a particular two-atom example, where indirect
near unity access to the dark subradiant asymmetric collective state is proved and
extend it to the single-excitation manifold of N atoms.

Two-atom case. The eigenstates of the Hamiltonian H
0

+ H
dip

are |Ei = |eei,
|Gi = |ggi and in the single-excitation subspace |Si = (|egi + |gei)/p

2 and |Ai =
(|egi � |gei)/p

2. The symmetric state |Si is superradiant (�S = �
1

= � + �
12

)
and bright, directly accessible via symmetric driving with strength �

1

=
p

2⌘. The
asymmetric state |Ai, on the other hand, is subradiant (�A = �

2

= � � �
12

) and dark.
Indirect access can be achieved by shifting the second atom’s excited state by 2�B (see
schematics in fig. 8.2b), where �B is tunable and quantifies the per-emitter shift for a
given magnetic field amplitude. We first analyze the dynamics in the absence of decay
by solving the time-dependent Schrödinger equation governed by the Hamiltonian
H = H

0

+ H
dip

+ H
sym

+ HB, where HB = 2�B�
+

2

��
2

. We reduce the dynamics to
three states, and assume a quasi-resonant Raman-like scheme where the population
of |Ei is at all times negligible. An e↵ective two-level system arises (between the
ground state and the asymmetric state; see section Methods below) and the resonance
condition can be identified as

�(2) = ��B +
q

�2

B + ⌦2 � 2⌘2, (8.8)

with an e↵ective Rabi frequency of

⌫(2)

R =

p
2⌘�B

⌦ +
q

�2

B + ⌦2 � 2⌘2

. (8.9)

To fulfil |cS |2 ⌧ 1, we need to restrict the driving to a parameter regime where
⌘, �B ⌧ ⌦. A scan over the magnetic field is performed and the exact numerical
results for the asymmetric state population are plotted in fig. 8.2d against the adia-
batic solution showing near unity population transfer for an optimized �B. Further
restrictions are imposed when decay is considered. These stem from the fact that
the coherent process described by ⌫R should be faster than the incoherent one char-
acterized by �A. For close particles, the ability to tune the distance ensures that
the scaling down of �A is very fast and the above conditions are readily fulfilled.
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For the particular example illustrated in fig. 8.2d we chose a = 0.05�
0

, resulting in
⌦ = 23.08 �, �A = 0.019 �. The 0.994 population is reached at T = 16.19 ��1, which

is very close to the theoretical estimate of T = ⇡/2⌫(2)

R = 16.179 ��1 obtained from
the adiabatic solution under the assumption of a ⇡-pulse transferring the population
to the target state.

Many-atom case. For a chain of N atoms, we consider the progressive shifting of
excited levels along the chain depicted in fig. 8.2a. This is realized by the application
of a magnetic field with a constant gradient and is described by the Hamiltonian
HB = 2�B

P
i(i � 1)�+

i �
�
i . Let us consider a dark state |di (d even) and the

bright state |b = d � 1i immediately above. Their coupling via HB is quantified by
�

db

= 2�B
P

i(i � 1)fd
i f b

i , as shown in fig. 8.2c.

We develop a protocol where direct o↵-resonant driving into the bright state
(amplitude �b) combined with a coupling between the bright and dark states via the
magnetic field leads to an almost unity population transfer into the dark state. Given a
su�cient energy separation, the problem can be reduced to solving the time-dependent
Schrödinger equation for the three coupled state amplitudes cb, cd and cG. Following
the same adiabatic approximation as in the two-atom case we reduce the general
dynamics to an e↵ective two-level system between the states meant to be connected
by an e↵ective ⇡-pulse, i.e., |di and |Gi. The generalized resonance condition (with
✏
db

= ✏d � ✏b) reads

�(N) = ��B(N � 1) � ✏d + ✏b
2

+

s
✏2db

4
+ �2

db

� �2

b , (8.10)

and was obtained in the limit where the coupling of the dark state to the other adjacent
bright state |d + 1i was neglected owing to the relation �d�1

� �d+1

. The e↵ective
transition rate between the ground state and the state |di is

⌫(N)

R =
�b|�db

|
� + ✏b + �B(N � 1)

. (8.11)

The addition of decay imposes a new constraint on the timescale of the process,

i.e., ⌫(N)

R � �d, required to ensure near unity population in the dark state. The
fulfilment of this condition depends on the individual system under consideration. As
an illustration of the procedure, fig. 8.2e presents the targeting of a robust dark state
in the single excitation manifold of four particles. Note, that the numerical results
are performed in an exact regime beyond the NN approximation and are in excellent
agreement with our conclusions obtained from the NN treatment.
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8.3 Discussions

8.3.1 Entanglement Properties

To justify the usefulness of collective states for quantum information purposes, we
employ the von Neumann entropy to analyze their entanglement properties. More
specifically, we compute the von Neumann entropy of the reduced density matrix
⇢s of a single two-level emitter (showing the degree of its bipartite entanglement
with the rest of the system) defined by S(⇢s) = �Pi �i log

2

�i, where �i is the i-th
eigenvalue of ⇢s and 0 log

2

0 ⌘ 0. We furthermore minimize the set of values for all
atoms to obtain a lower bound on the entanglement contained in the system. We
compare the numerical results to the single-atom entropy of the symmetric Dicke state
|�N/2, �N/2 + ni [140]. For these particular states the entropy is maximized if the
number of excitations in the state is n = N/2. It follows that it is highly desirable to
drive the system into robust states as close as possible to n = bN/2c excitations (where
bN/2c is the largest integer smaller or equal to N/2), since this manifold contains the
most entangled state. A comparison of the exact numerical data and the analytical
expression for the entropy is shown in fig. 8.3a.

Another way to characterize the entanglement of the prepared state is to investigate
their depth of entanglement [213, 214], which does not quantify the entanglement
itself but rather shows how many atoms of an ensemble are involved in the present
entanglement. This measure has been used in recent experiments [214,215] since it is a
readily measurable quantity. The depth of entanglement is computed as follows: given
an N -atom target state in which an arbitrary number of said N atoms is entangled,
we compute the limit of how much population one can drive into this state such that
the resulting density matrix ⇢ remains separable into a subset of density matrices
that exhibit no more than k-atom entanglement (1  k  N). This may be done by
numerically maximizing the target state population Pt as a function of the ground
state population PG for di↵erent k. The boundaries themselves indicate how many
atoms need to be entangled in order to prepare the pure target state, i.e., the boundary
where the target state population is maximized to 1 corresponds to the number of
atoms entangled in the (pure) target state. If a general prepared state has a target
and ground state population such that the corresponding data point lies on or above
the k-atom boundary, more than k atoms are entangled.

Obviously, for the pure target states considered in the above computation all atoms
contribute to the entanglement, since otherwise the minimal von Neumann entropy as
shown in fig. 8.3a would be zero. For a more interesting result, we can compute the
depth of entanglement in order to demonstrate the e�ciency of the driving procedure
using a magnetic field gradient as in fig. 8.2e. From fig. 8.3b, where all boundaries
have been plotted for the considered subradiant four-atom state, it is clear that the
prepared state shows all-atom entanglement as the corresponding data point lies far
above the boundary for three-atom entanglement.
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8.3.2 Implementation Considerations

The proof-of-principle technique presented above has been particularized on a specific
generic system of emitters in an equidistant chain. The choice is natural since the
electromagnetic vacuum provides a simple example for both collective dispersive and
dissipative dynamics. To exemplify a possible realization we consider a particular
system [216] where bosonic Sr atoms are trapped in a magic wavelength optical lattice
at separations of a = 206.4nm. The working transition is at �

0

= 2.6µm, between the
3P

0

and 3D
1

electronic states. This amounts to a ratio of a/�
0

⇡ 1/13 which allows
for an operation in the regime targeted by our scheme. The corresponding single atom
decay rate is at the order of � = 0.3 MHz and circularly polarized light can allow for
transitions between states with a di↵erence of 1 in magnetic quantum number. We
have numerically investigated a system of 4 atoms in such a configuration and found a
sizable 73% target state population for ⌘ = 2 � and �B = 0.5 �, under the conditions
of a relatively small level shift between the dark and bright state around 6 � which
does not allow for large driving powers. For further optimization of the e�ciency of
the target state preparation one could envision a modified setup where a trapping
transition of smaller wavelength can be chosen that would most importantly allow for
better state separation (owing to larger dipole shifts). The corresponding magnetic field
gradient required to produce the considerable �B = 0.5 � shift on a distance of a = 206
nm is around 5.2 · 105 G/m, not far from state-of-the-art values achievable in high
magnetic field gradient magneto-optical trap experiments [217,218]. Of course, there
are many detrimental practical e↵ects that can seriously limit the above technique such
as light-assisted collision loss. We envision the extension of the described technique to
systems where both the coherent and dissipative particle-particle interactions can be
suitably tailored. For example, the same kind of dipole-dipole Hamiltonians can occur
in 3D lattices of polar molecules [219] or between two di↵erent colour NV centres in
diamonds [220].

8.3.3 Conclusions

Direct particle interactions are typically detrimental and limiting in precision measure-
ment applications. Here, we have presented some specific opposite examples, where the
collective nature of the decoherence combined with the coherent binary dipole-dipole
interactions is used as a new resource for the controlled and e�cient preparation of
specially selected states. The excitation scheme can be tailored to address target
states exhibiting both entanglement as well as robustness against decay. As a generic
example we studied the case of a one-dimensional system of tightly spaced equidistant
quantum emitters. Already the inherent dipole-dipole coupling allows for a targeted
state preparation technique via energy selection. The performance of the excitation
can be enhanced additionally via the continuous application of a spatially increasing
magnetic field. The general principle of such a phase imprinting technique is potentially
applicable in many specific environments such as optical lattices or atoms and ions
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localized within one or more common optical cavity modes [181,197], NV-centres or
superconducting qubits coupled to CPW transmission lines or resonators [184,198].

8.4 Methods

8.4.1 Decay Rate of the States

In order to arrive at an analytical expression for the decay rate of an eigenstate | ki of
the Hamiltonian in equation (8.1), we consider the homogeneous part of the di↵erential
equation of the corresponding density matrix element that arises from the master
equation. The solution of this di↵erential equation yields an exponential decay. The
rate at which the state population decays may be written as

� 
k

= � h k| L [| ki h k|] | ki =
X
i,j

�ij h k|�+

i �
�
j | ki . (8.12)

Note, that this is true only for states that contain a specific number of excitations, i.e.,
they are eigenstates of the operator

P
i �

z
i . Obviously, this is fulfilled for eigenstates of

the considered Hamiltonian. Equation (8.12) was used in order to compute the rates
depicted in fig. 8.1d and throughout the manuscript. For example, we used it in order
to compute the decay rate of the eigenstates in the nearest neighbour approximation
�m.

8.4.2 Subradiance and Disorder

Let us consider the influence of spatial disorder on subradiant properties of the target
states. To mimic disorder we perturb an equidistant chain of N emitters (average
separation a) by introducing an uncertainty in each emitter position quantified by a
defect parameter s (normal distribution of variance sa). We then write the randomized
matrix of decay rates and find the minimum decay channel without, as well as in
the presence of disorder of s = 20% and s = 40%. For the s = 0% case, it has
been shown [187] that the minimum decay rate scales exponentially with N even for
distances up to 0.4�

0

, while the linear scaling with N typical for superradiance is
reached for a ⌧ �

0

only. After averaging over 100 random configurations, we plot the
logarithm of the minimal rates as a function of increasing N in fig. 8.4a.

As a somewhat surprising result, subradiance scales even better with N as the
disorder increases. This might be understood as a destructive interference e↵ect brought
on by the cancellation of emitted photons stemming from the random positioning.
As pointed out in previous investigations [187], the states of low symmetry (as, for
example, the m = N state) possess decay rates closest to the analytically derived
minimal rate. We analyze the respective sensitivity of the state subradiance to
disorder by initializing the system of N emitters in the m = N state and allow it to
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decay. The outcome is plotted in fig. 8.4b and shows remarkable robustness of the
disordered systems on a long time-scale. While on a short time-scale disorder pushes
the considered state into faster decaying channels, the long time limit shows that the
remaining population accumulates in the disorder-enhanced robust states.

For short time-scales, the state still decays slowly (subradiantly), however, the decay
rate increases with growing disorder (s = 40%). More remarkable, though, is the
behaviour the decaying states show for long time-scales, as the states subject to larger
disorder become more robust than the unperturbed system. This is due to the fact
that all population in the m = N state that decays through more radiative channels
have decayed at that point and only the most subradiant channel (minimal eigenvalue
of the decay rate matrix) remains. As seen in fig. 8.4a, this eigenvalue is even further
reduced by disorder which explains the long time-scale behaviour in fig. 8.4b.

8.4.3 Coherent Dynamics with a Magnetic Field Gradient

Two-atom case. To find the expressions in equation (8.8) and equation (8.9) we
solve three coupled di↵erential equations neglecting the population of the fully inverted
state |Ei as far o↵-resonant for all times. In the collective basis, where any state may
then be written as | i = cS |Si + cA |Ai + cG |Gi, the equations are

iċS = (� + �B + ⌦)cS � �BcA +
p

2⌘cG, (8.13)

iċA = (� + �B � ⌦)cA � �BcS , (8.14)

iċG = ⌘cS , (8.15)

where ⌦ = ⌦
12

is the coherent interaction between the atoms and � is the detuning
between the atomic resonance frequency and the driving laser. For an e�cient driving
of |Ai the population of the state |Si needs to be negligible which allows us to set a
steady-state condition, namely ċS = 0 yielding the desired e↵ective two-level system
between |Gi and |Ai.

Many-atom case. The same approach as in the two-atom case may be used to
describe the dynamics in the single-excitation manifold for an arbitrary number of
atoms in a chain. Given su�cient energy separation we may neglect all states but the
ones we aim to address. We can indirectly address a dark state |di by driving the
bright state |bi immediately above, which is coupled to the dark state by a magnetic
field gradient. Neglecting all populations but cb, cd, and cG and their respective
couplings via the magnetic field gradient, the investigation reduces to the equations

iċb = [� + ✏b + �B(N � 1)] cb + �
db

cd + �bcG, (8.16)

iċd = [� + ✏d + �B(N � 1)] cd + �
db

cb, (8.17)

iċG = �bcb. (8.18)

For an e�cient driving of the dark state we may again invoke a steady-state condition
on the bright state population ċb = 0. This, again, yields an e↵ective two-level system
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between the ground and the dark state with resonance condition and Rabi frequency
as displayed in equation (8.10) and equation (8.11), respectively.

8.4.4 Von Neumann Entropy

For a Dicke state an analytical expression for the von Neumann entropy of the reduced
density matrix can be obtained. First, note that, since Dicke states are invariant under
a permutation of the atoms, all reduced density matrices are identical. Hence, they all
share the same von Neumann entropy for a given number of excitations n. We may
choose to reduce the full density operator ⇢ to the density matrix of the first atom in
the ensemble, i.e., ⇢1

s ⌘ ⇢s = tr
2,...,N (⇢) which yields a von Neumann entropy of

S(⇢s) =
n

N
log

2

✓
N

n

◆
�
⇣
1 � n

N

⌘
log

2

⇣
1 � n

N

⌘
. (8.19)

For the actual eigenstates of the Hamiltonian in equation (8.1) this computation
needs to be done numerically. Furthermore, these states are not invariant under
permutation of atoms and hence it is required to minimize the entropy with respect
to the atomic chain index in order to find the lower bound.

8.4.5 Depth of Entanglement

The boundaries depicted in fig. 8.3b were found by maximizing the target state
population with the condition on the density matrix of the prepared state to contain
no more than k-atom entanglement, i.e., ⇢ =

N
i ⇢

k
i

i with ki  k and at least one
ki = k. To compute the boundaries we generalized the algorithm that was previously
used solely for the W -state [214] to arbitrary states in the single-excitation manifold.
For the computation of all boundaries we need to distinguish the two cases where
PG = 0 and PG > 0. Considering a separable state (k = 1), the boundary for PG > 0
is found to be

max(Pt) = PG maxQ
i

↵
i

=

p
P

G

������
X

i

|ci|
q

1 � ↵2

i

↵i

������
2

, (8.20)

where ↵i 2 [0, 1] and ci are the coe�cients of the target state. For PG = 0 the
maximization is much simpler, i.e., max(Pt) = max |ci|2, which is found by setting
one ↵i = 0 and the remaining coe�cients ↵j 6=i = 1. Note, that for both these and all
following computations we neglect the symmetry of the state, i.e., the phases of the
coe�cients ci by using |ci|. This is valid due to the invariance of entanglement under
local unitary operations and necessary if we restrict the coe�cients ↵i in the way we
did.

For multiple-atom entanglement (k > 1) the matter of finding the corresponding
boundary is no longer so simple. In order to find the maximum population, we assume
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maximally allowed entanglement in the prepared state. We split the prepared state
into M = dN/ke sets, where M � 1 sets are k-atom entangled and the remaining one
is k0 = N � k(M � 1)-atom entangled. To find the maximum, one has to consider all
possible positions of the k0-entangled state. If, for example, the k0-entangled state is
at the last position, the population of the target state |ti in the prepared state reads

Pt =

�����ht|
" 

M�1O
i=1

|'k
i i
!

⌦ |'k0
M i
#�����

2
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is a general non-separable state of k atoms in the single-excitation manifold. The state
|Gki is the k-atom ground state and the coe�cients �i

r 2 [0, 1] have to be normalized,
i.e.,

P
r(�

i
r)

2 = 1 8 i. One then has to maximize the target state population with
respect to the coe�cients ↵i 2 [0, 1] and �i

r with the condition
Q

j ↵j =
p

PG. The
number of these coe�cients, however, grows vastly with the number of atoms, hence
numerical computations are limited. For PG = 0 one can again choose one ↵i = 0 and
all ↵j 6=i = 1.

Note, that all boundaries computed via this maximization only hold for pure states.
In order to find the boundaries for mixed states we need to compute the convex hulls
of the respective boundaries [214]. The k = N boundary is found when a perfect
superposition between the ground and target state is reached.

In this work we considered the specific case of an exciton state of a four-atom
chain. In that case, when investigating two-atom entanglement the permutation of
the k0-entangled state is rendered unnecessary since k0 = k = 2. Unfortunately, this is
no longer true for k = 3, where we did have to account for all permutations.
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8.4 Methods

Figure 8.2: Coupling to dark states via a magnetic field gradient. a) Linearly increas-
ing level shifts along the chain occurring in the presence of the magnetic
field gradient. b) Illustration of the level structure and indirect dark
state access for two coupled emitters. While symmetry selects the state
|Si, o↵-resonant addressing combined with bright-dark state coupling of
strength �B allows for a near-unity population transfer into the state
|Ai. c) Dynamics in the single-excitation manifold of N coupled emitters
where symmetric driving reaches the bright states with amplitudes �m

while the magnetic field couples neighbouring dark and bright states.
d) Plot of the asymmetric state population for the two-atom case as a
function of the increasing magnetic field (solid line) compared to the
steady-state approximation (dashed line) at numerically optimized time
T = 16.19 ��1, with parameters ⌘ = � and a = 0.05�

0

. e) For a chain
of N = 4 emitters, a 91%-e�cient ⇡-pulse to the most robust state
can be achieved as demonstrated in the population evolution plot. The
separation is chosen to be a = 0.025�

0

, while ⌘ = 40 � and numerical
optimization is employed to find �B = 0.98 �.
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Figure 8.3: Entanglement properties. a) Comparison of the numerically computed
von Neumann entropy (empty circles) of the reduced density matrix of
the chain minimized over the atom index and the analytical expression for
the entropy of the Dicke state (green circles), both for excitations n = 1
and n = bN/2c as a function of the atom number N at distance a = 0.1�

0

.
b) Depth of entanglement of the subradiant four-atom state (blue dot)
prepared by the magnetic field gradient scheme (see fig. 8.2e). It clearly
lies above the k = 3 boundary indicating four-atom entanglement. The
k-atom entanglement boundaries of the target state population Pt as a
function of the ground state population PG have been computed for the
corresponding target state of a four-atom chain at distance a = 0.025�

0

.

Figure 8.4: Subradiance and disorder. a) Plot of the logarithm of the minimal
eigenvalue of the decay rate matrix (matrix with entries �ij) as a function
of N at a distance of a = 0.4�

0

for increasing levels of disorder (s =
0, 0.2, 0.4). b) Decay of the |m = Ni state as a function of time. In
the presence of disorder (s = 0.2, 0.4) the short time and long time
behaviours are fundamentally di↵erent. At short times, disorder can
push the state towards faster decaying channels while decay inhibition
due to disorder occurs at larger times.
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In this article Thomas Maier and I numerically investigated properties of a laser, whose
active medium is given by a collection of atoms that are coupled via dipole-dipole-
interaction. The methods are quite similar to what we used in above publications, yet
a cavity and a broadband pump are added. My contributions to this article were a
plethora of discussions and guidance throughout the calculations as well as writing
large parts of the text. The article was published in Optics Express on June 2nd,
2014 [190].

Abstract

An ideal superradiant laser on an optical clock transition of noninteracting cold
atoms is predicted to exhibit an extreme frequency stability and accuracy far below
mHz-linewidth. In any concrete setup su�ciently many atoms have to be confined
and pumped within a finite cavity mode volume. Using a magic wavelength lattice
minimizes light shifts and allows for almost uniform coupling to the cavity mode. Nev-
ertheless, the atoms are subject to dipole-dipole interaction and collective spontaneous
decay which compromises the ultimate frequency stability. In the high density limit
the Dicke superradiant linewidth enhancement will broaden the laser line and nearest
neighbour couplings will induce shifts and fluctuations of the laser frequency. We
estimate the magnitude and scaling of these e↵ects by direct numerical simulations of
few atom systems for di↵erent geometries and densities. For Strontium in a regularly
filled magic wavelength configuration atomic interactions induce small laser frequency
shifts only and collective spontaneous emission weakly broadens the laser. These
interactions generally enhance the laser sensitivity to cavity length fluctuations but
for optimally chosen operating conditions can lead to an improved synchronization of
the atomic dipoles.

9.1 Introduction

An essential and characteristic property of laser light, observed since its first generation,
is its extraordinary coherence and frequency stability well below the width of the optical
resonator used. Far above threshold the linewidth is limited by technical noise of the
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gain medium and the mirrors only. Continuous technological advances have brought
this limit down to an incredible stability below the Hz-level [222], which competes
against the Q and the linewidth of long lived atomic clock states. At this point,
further technological improvements seem extremely challenging. Therefore, it has been
suggested recently [223] and to some extent demonstrated experimentally [159,224]
that an atomic clock transition could be used as a narrow band gain medium to run a
laser. Due to the very feeble individual dipole moments of the atoms such a device
can only be operated in the strong collective coupling regime, where superradiant
emission into the field mode provides for the necessary gain [225]. In this domain of
operation a huge collective dipole constituted by a large number of atoms, which are
synchronized via their common coupling to the cavity field [160,226], will build up.

The general idea of superradiant lasers and their properties have been discussed
already two decades ago [167, 227], where a unique frequency stability scaling with
the inverse square of the atom number N and squeezed output light was predicted.
Their superb accuracy in the regime of a cavity linewidth much larger than the atomic
linewidth were highlighted just recently [159]. Most importantly, in this case the laser
becomes very insensitive to technical noise in the resonator and its properties are
dominated by the intrinsic stability of the collective atomic dipole. Under favourable
conditions, with only a few photons and millions of atoms present, a natural width of
the system several orders of magnitude below the 1 Hz-level could be envisaged.

A central, yet open technical problem here is the implementation of a uniform
collective coupling of the atoms to the field mode as well as the optical pumping in
the atomic system without a considerable perturbation of the lasing levels, which in
this case include the atomic ground state. Thus, a very careful choice of operating
parameters is required. Here, we study another intrinsic source of perturbation in
this sensitive system, namely direct dipole-dipole interaction between the laser active
atoms, as they are densely confined within the optical resonator. Similar to atom-atom
collisions in Ramsey experiments [116], dipole-dipole couplings tend to induce phase
noise and decoherence of the collective atomic dipole. In particular in lattice setups
at low filling, where collisions are strongly suppressed, this should constitute the most
prominent source of noise for such a laser.

The basic phenomenon of superradiance was theoretically studied in detail, e.g.,
by Haroche and coworkers [147], about 50 years ago using a variety of analytical
approximation methods [151, 152]. As an important e↵ect one finds that the decay
rate of low energy collective excitations grows linearly with the particle number
N [228]. For multiply excited states the e↵ect is increased further and the collective
decay of a strongly inverted ensemble exhibits a delayed intensity maximum largely
proportional to N2 as a significant deviation from the exponential decay of individual
atoms [144, 146, 147]. The phenomenon has been observed in a large number of
experiments in gases and solids [146,148] and more recently also for ultracold quantum
gases [149,150].

As in every laser setup, we naturally have to deal with inverted ensembles. Hence,
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we can expect that superradiant e↵ects will play an important role and the assumption
of individual atomic decay at the independent free space single atom rate will lose its
validity. Let us emphasize that the collective symmetric coupling of the atoms to the
cavity mode does not require the atoms to occupy a small volume of the order of a
cubic wavelength, but simply calls for an almost equal cavity coupling constant for
all atoms. Dicke superradiant spontaneous decay, on the other hand, is maximal for
closely spaced emitters, but still plays a decisive role in more extended geometries
and in particular for regularly ordered ensembles. While this free space superradiant
interaction and decay was incorporated intrinsically in the early works on superradiant
lasing [227], it was neglected in the more recent considerations on superradiant lasing
on ultra narrow atomic transitions [223].

In the present paper we investigate the full model for the collective decay process in
a superradiant laser configuration. While the underlying Hamiltonian and dynamical
master equations for the coupled atom-field dynamics are well established, exact
treatments of the full decay problem for more than a few particles is hardly possible
apart from some special cases. Numerical simulations can be performed for somewhat
higher atom numbers in the fully collective limit. However, for more particles in a
small but finite volume, collective and individual decay are present and the equations
immediately become very cumbersome, as the number of occupied states within the
total physical Hilbert space (growing as 2N ) gets prohibitively large. Interesting
results can still be obtained for special finite configurations, which should exhibit the
qualitative consequences of dipole-dipole coupling quite well. Besides demonstrating
the underlying basic physical mechanisms, our study aims at direct implications for
the laser linewidth of a magic wavelength lattice laser in the superradiant regime [40,
158–160].

9.2 Model

We consider N identical two-level atoms held in a regular spaced configuration, e.g.,
in a far detuned optical trap, each of them symmetrically coupled to a single mode of
a high Q optical resonator. Due to the inherent exposure of the atoms to the vacuum
bath the ensemble is a↵ected by coherent dipole-dipole energy exchange processes
and also by collective spontaneous emission [136]. Further, we employ a transverse
incoherent pump, which allows us to use the atoms as an active medium, as well as
another dissipative process, the cavity loss. Upon Born, rotating wave and Markov
approximation we end up with a standard Lindblad type master equation. Explicitly
the time-dependence of the N -atom density matrix is governed by (~ = 1)

@⇢

@t
= i [⇢, H] + L

cd

[⇢] + L
pump

[⇢] + L
cav

[⇢] = L [⇢] , (9.1)
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, (9.2)
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Figure 9.1: Schematics of a lattice laser setup. A transversely pumped (pumping rate
R) finite atomic ensemble with dipole-dipole couplings ⌦ij and collective
spontaneous emission �ij inside an optical resonator with a loss rate of
.

where �+

i and ��
i are the raising and lowering operators for the atomic dipole of the

i-th atom with the transition energy !
0

, the operators a† and a correspond to the
creation and annihilation of a photon with the frequency !c in the cavity mode , ⌦ij

denotes the resonant dipole-dipole energy transfer between the atoms i and j, and
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represents the Jaynes-Cummings type interaction between the individual atomic
transition dipoles and the cavity mode with g being the coupling that emerges if a
constant mode function is assumed. This approximation is justified in the situation
where the atomic ensemble is aligned transversely to the propagation direction of the
cavity mode or its dimensions are much smaller than the length of the resonator.

The collective atomic damping is accounted for by the Liouvillian
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with generalized spontaneous emission rates �ij arising from the coupling of the
atomic transition dipoles through the vacuum field [162]. The incoherent transverse
broadband pumping, which in our model acts on each atom in the same way, leads to
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with R quantifying the pumping rate and cavity loss with the rate  is described by

L
cav

[⇢] = 
⇣
2a⇢a† � a†a⇢� ⇢a†a

⌘
. (9.6)
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Observe that the collective coupling and decay matrices [⌦ij ] and [�ij ] possess
non-diagonal elements, which have to be calculated as a function of the system’s
geometry [144]. In many other cases, due to the finite correlation length of vacuum
fluctuations, these nondiagonal parts can be safely neglected. Explicitly, for identical
atoms we have [138]
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where ⇠ = k
0

rij . Here, rij denotes the relative distance between the atoms i and j and
✓ is the angle the transition dipole draws with the vector connecting the two atoms.

A crucial property of a laser is its spectrum in the steady state. In order to
calculate the spectral distribution of the light field inside the cavity we employ the
Wiener-Khinchin theorem [229], where

S(!, t) =

Z
e�i!⌧

D
a†(t + ⌧)a(t)

E
d⌧. (9.9)

Numerically, this is achieved by at first determining the steady state ⇢S , which
can be calculated as the kernel of the Liouvillian, i.e., solving L [⇢S ] = 0. Now, the
annihilation operator a is applied and we let this state evolve. After a time ⌧ has
elapsed, we apply the creation operator a† and Fourier-transform the trace of this
aggregate, as the Fourier transformation of the expectation value of the field correlation
function equates to the spectrum of the intra cavity and output light field.

9.3 Superradiant Laser Dynamics with Confined Ensembles

9.3.1 General Properties of Superradiant Lasing

First, let us exhibit some general features of the dynamics of a laser with all atoms
coupled equally to the cavity mode in the two idealized limiting cases of (a) fully
collective and (b) individual independent spontaneous decay. Mathematically, this
is implemented simply by setting (a) �ij = � for the collective case as discussed
in [227] and (b) �ij = ��ij for independent decay as studied in [223]. Surprisingly,
the fully collective case is much easier to deal with numerically as the total collective
spin magnitude is conserved and the Hilbert space for N atoms is restricted to the
N + 1 states of a spin-N/2 system. The e↵ective pumping of the atoms can also be
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described as an independent or collective , which results in analogous expressions as
those describe the respective decay processes, see 9.4. Here we refrain from including
dipole-dipole induced excitonic shifts of the energy levels. This assumption can be
justified for a completely homogeneous atomic density [147] but has to be reconsidered
for concrete finite size implementations. We will explicitly account for this in the finite
lattice geometries discussed below.

Figure 9.2: Stationary photon number as a function of the pump strength R and
the spontaneous decay rate � for collectively pumped and collectively
decaying atoms (a), individually pumped but collectively decaying atoms
(b) and individually pumped and individually decaying atoms (c).

Figure 9.2 shows the mean photon number as a function of the pump strength R
and the single atom decay rate � for the three cases of collective pump and collective
decay, individual pump and collective decay and independent pump and independent
decay for N = 4 atoms. We see that the maximum photon number is not so di↵erent
for the three cases and appears at small spontaneous decay rates. For fully collective
pump and collective spontaneous decay fig. 9.2(a) superradiant emission into free
space limits the optimal operation regime to a lower pump intensity, though.

Now, it is of course most interesting to look at the frequency stability or line-width
of this laser. As seen in fig. 9.3 the output intensity spectrum exhibits a nonlinear
growth with the atom number (green line), as expected, until it saturates (red line).
Remarkably, however, the linewidth does not narrow with the photon or atom number,
but is even increased by superradiant spontaneous emission. Thus, the optimal case
seems to be collective emission into the lasing mode without superradiant spontaneous
decay. We will investigate this in more detail in the following sections.

9.3.2 The Superradiant Lattice Laser

Above we have seen that collective decay and collective pump strongly change the
laser dynamics and its properties. Besides modified decay rates governed by eq. (9.4)
in any finite size geometry dipole-dipole interaction as given by eq. (9.2) has to be
taken into account as well. To study the basic physical e↵ects, in this section we will
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Figure 9.3: Output spectrum of a fully collective laser with di↵erent atom numbers
N for � = /20 and R = /5 compared to the empty cavity linewidth
(N = 0), absolute (a) and normalized (b).

investigate three di↵erent regular geometric arrangements for the laser active atoms.
We compare a linear chain, where we go beyond the single excitation and nearest-
neighbour coupling limits discussed in [228], to an equilateral triangle and a square
configuration. Let us point out, that for two atoms, e.g., [145], the particular relative
arrangement is irrelevant, and therefore the system can be handled analytically.

A square lattice of four atoms

As a generic example we first show the photon number, the inversion of the active
medium atoms and the g(2)(0) correlation function for a fixed cavity loss  while
tuning the pumping rate R and the individual atom decay rate � for a four atom laser
in a square lattice. The chosen lattice constant is half of the magic wavelength for
Strontium, �

magic

/(2�
0

) ⇡ 0.58 [40, 166]. For the photon number shown in fig. 9.4(a)
the maximum appears at a pumping ratio of R/ = 2.2, which is equal to the result
from above for individual pumping and collective decay as depicted in fig. 9.2(b).

In fig. 9.4(b) the expectation value of the �z operator is illustrated, where the black
line represents the crossover to population inversion. On the right-hand side of the
line the atom population is inverted, corresponding to the lasing case. Figure 9.4(c)
presents the g2(0) function, where the white line highlights a value of g2(0) = 1,
indicating a perfectly coherent light field. The area where g2(0) < 1 could be referred
to as an anti-bunching regime.
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Figure 9.4: Stationary operation of a four atom laser on a square lattice. (a) photon
number, (b) atomic inversion, where the black line indicates equal popu-
lation of the excited and the ground state, (c) g2(0) function, with the
white line at g(2)(0) = 1 representing a coherent state.

Figure 9.5: Photon number (a), atomic inversion (b) and g2 function (c) of the laser
as a function of the pump strength R for di↵erent atomic arrangements
and a fixed spontaneous decay rate � = 0.2.

Comparison of di↵erent geometrical configurations

Let us study the influence of the geometric arrangement of the particles for di↵erent
numbers of atoms and compare the results for the square discussed above to an
equilateral triangle of atoms and a three and four atom chain. In order to obtain a
substantial e↵ect despite our small atom numbers, we choose a smaller lattice constant
of d = �

0

/10 and a fixed atomic decay rate of �/ = 0.2.

In fig. 9.5 we show, that for the average values the atom number is more important
than the particular geometric arrangement. Interestingly for four atoms one can even
reach sub Poissonian photon statistics.

Naturally, the results depend on the average distance of the atoms, which is shown
in the following set of pictures in fig. 9.6 for a square of di↵erent lattice constants d
with a fixed spontaneous emission rate of �/ = 0.2. As one might have expected,
fig. 9.6 demonstrates a much more pronounced e↵ect when varying the distance as
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Figure 9.6: Photon number (a), atomic inversion (b) and g2 function (c) of the laser
as a function of the pump strength R for a square of di↵erent lattice
constants d and a fixed spontaneous decay rate � = 0.2.

opposed to changing the geometry.

Overall, despite fairly strong interactions of the atoms at small distances, the laser
seems to be very robust against such pairwise perturbations, which appear to average
out quite well once the oscillation threshold is surpassed. The di↵erences increase
with pump strength where, on average, more particles are excited.

9.4 Laser Stability and Frequency Shifts for Di↵erent Atomic
Distances

Of course, the most sought after quality of a superradiant laser is its superb frequency
stability and accuracy. In the first section we have seen that collective spontaneous
decay can broaden the laser line. As dipole-dipole interactions shift the atomic energy
levels, this might as well change the laser line position, which we will now study for a
lattice laser in more detail in the following. Now, we will study this e↵ect for a lattice
laser.

9.4.1 Laser Linewidth and Frequency Shift

As is well known, the spectrum of a laser in the bad cavity limit deviates from
the idealized Shawlow-Townes result, but the centre of the line still approximately
follows a Lorentzian [160] so that in our numerical analysis the linewidth and its
centre position relative to the bare atom line can be determined from a Lorentzian
fit to the steady state spectrum, as described in sec. 2. Therefore, the width of
the Lorentzian corresponds to the laser’s linewidth while the o↵set in the maximum
describes the energy shift, which is the energy of the light field in the cavity relative
to the cavity ground frequency. Figure 9.7 and fig. 9.8 present the fitted width �L and
the energy shift � for di↵erent interatomic distances and geometrical configurations as
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Figure 9.7: Laser linewidth (a) and frequency shift (b) for a square atom arrangement
at di↵erent distances as a function of the pump strength for a fixed atomic
decay rate of � = 0.2.

a function of the pumping rate R. For these calculations we used the same parameters
as above and we don’t include a detuning between the atoms and the cavity mode
(� = !c � !

0

= 0).

In fig. 9.7 we depict the linewidth and frequency shift of a laser with four atoms in
a square configuration as a function of the pump strength for di↵erent inter atomic
distances. We observe a minimum linewidth at a moderate pump strength of R/ ⇡ 1.9,
which corresponds to an operation at the maximally achievable photon number, as
shown in fig. 9.4.

For a stronger pump the perturbations due to collective interactions dominate,
though significant e↵ects appear for very closely positioned atoms, i.e., d < �

0

/2,
only. Even with just four atoms it is possible to achieve a linewidth significantly
below the resonator’s linewidth. The predicted frequency shift with respect to the
bare atom frequency (as depicted in fig. 9.7) remains very small for larger interatomic
distances and reaches a maximum value when the laser is operated at R/ ⇡ 3, close
to the maximum photon number. This could certainly be an observable phenomenon,
but it is not detrimental for the operation of such a laser. Obviously, for a realistic
setup we assume much too high a value for the atom-mode coupling g, which however
seems justified as one of our individual atoms could represents 103 to 104 atoms in an
experiment.

Interestingly, for the linewidth and shift properties, geometrical e↵ects are more
important than they are for the average intensity. A square arrangement of the atoms
creates a much larger shift than a triangular or a linear array, as can be seen in
fig. 9.8. Note that the increased shift with the atom number could lead to observable
perturbations for larger ensembles. Again, operation at a lower pump intensity could
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Figure 9.8: Laser linewidth (a) and frequency shift (b) for di↵erent geometric con-
figurations but same lattice constant (d = �

0

/10) as a function of the
pump strength for a fixed atomic decay rate of � = 0.2.

help to minimize the e↵ect.

9.4.2 Laser Sensitivity to Cavity Length Fluctuations

A central criterion for the stability of a laser is its sensitivity to fluctuations of the
e↵ective cavity length, which at present is one of the main limitations of reference
oscillator stabilized lasers. Despite spectacular recent progress [42], comprehensive
control at this level is still an extraordinary technical challenge. With the atoms acting
as reference oscillators less e↵ort in order to achieve technical stabilization is expected
in an ideal superradiant laser. In the following we will study the e↵ect of a varying
cavity frequency described by an e↵ective detuning (�) on the average photon number
fig. 9.9 and the frequency mismatch between the bare atomic transition frequency
and the laser field (�a = !

0

� !L) as seen in fig. 9.10 depending on the average
atomic distance. As shown in fig. 9.9(a) for closely positioned atoms the interaction
evokes a significant blue shift of the cavity frequency, generating the maximum photon
number with respect to the clock transition. For atoms in a magic wavelength lattice
fig. 9.9(b) this shift is much smaller and close to the interaction-free case. The detuning
sensitivity of the laser output spectrum in these two cases is depicted in fig. 9.10.

We see that the laser frequency pulling via the cavity changes with the interaction
and increases with pumping and the intracavity photon number. Nevertheless, as
indicated by the solid and dashed lines, the e↵ective laser frequency change remains
within an atomic linewidth even for cavity fluctuations on the order of the cavity
width. At low pump strength and small inversion a sort of self-synchronization of the
atomic dipoles via direct interactions can lead to very strong suppression of cavity
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Figure 9.9: Average photon number for atoms on a square with d = �
0

/10 (a) and
d = �

magic

/2 (b) for variable cavity detuning and an atomic decay rate
� = 0.2.

fluctuations at the expense of very little output light, while for stronger pumping
interaction e↵ects are suppressed and the cavity drifts produce a more significant
impact on the laser frequency. Overall, we observe that by choosing optimal operating
conditions a decoupling of the cavity fluctuations from the laser frequency can be
suppressed very e↵ectively, even in the case of atomic interactions. However, this
decoupling generally also reduces the output power of the laser.

9.5 Conclusions and Outlook

By means of numerically solvable examples involving a few particles only, we have
evaluated the influence of dipole-dipole interaction and collective spontaneous emission
on the radiative properties of a superradiant laser in a lattice geometry. In general,
even for fairly closely spaced atoms, shifts and frequency uncertainties are of the
order of the free space atomic linewidth. Only for very densely packed ensembles
superradiant free space decay will substantially broaden the laser line and increase
the sensitivity of the laser frequency to cavity drifts. Quantitatively, the various
limiting cases of a completely collective laser as opposed to an independent atom
system can lead to a di↵erent scaling behaviour of the photon number and the
linewidth with substantially di↵erent photon statistics. Fortunately, for a Strontium
setup based on a magic wavelength lattice, the detrimental e↵ects remain very small,
although they could attain an observable magnitude at high filling. At optimally
chosen operating conditions dipole dipole interaction can be exploited to reduce laser
frequency fluctuations via direct phase stabilization even at very low photon numbers.
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Figure 9.10: Frequency shift for a square atom configuration with d = �
0

/10 (a) and
d = �

magic

/2 (b) for variable detuning and a fixed atomic decay rate
of � = 0.2. The dashed line represents �a/� = �1 and the solid line
corresponds to �a/� = 1.

In this work we still assumed a rather ideal and to some extent artificial pumping
mechanism, replenishing the upper atomic state by introducing the minimum necessary
decoherence only, while also neglecting light shifts from the pump lasers. Any more
realistic pumping via extra levels or an injection of excited atoms would, of course, add
extra noise and has to be designed very carefully. This is one of the major remaining
challenges for the implementation of such an optical version of the hydrogen maser.
In any case, from the point of view of stability and shifts, the operation at weak pump
strength seems favourable, although the very weak output field could be a technical
challenge for practical use.
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10 Conclusions

The publications presented above constitute the main body of this thesis and have
followed each other on a fairly straight path. Let us now summarize these papers and
present general conclusions and an outlook on further research opportunities in their
realm.

10.1 Summary and Conclusions

Throughout this thesis we have seen that dipole-dipole interaction and the resulting
enhanced or decreased collective spontaneous emission rates can have a large e↵ect on
spectroscopic measurements.

We began with an investigation of dipole-dipole interaction in somewhat extended
toy models of three, four and five emitters. We saw that moving from the arguably
simple case of two atoms, where super- and subradiance can be treated straight-
forwardly, more than two emitters becomes much more involved rather quickly. We have
performed analytical investigations of a equilateral triangle and numerical calculations
for a three-atom chain. Our main results were that the closer the emitters are to each
other, the more detrimental their interactions are to a Ramsey spectroscopy setup
and that for the magic wavelength of 87Sr the nearest-neighbour dissipative coupling
becomes negative, resulting in subradiant behaviour.

In the next part, we have presented and investigated the idea of using subradiant
as opposed to superradiant states in a Ramsey spectroscopy setup. We did this by
improving the measurement procedure to include an extra step, namely the phase
separation of individual emitters after the first ⇡/2-pulse. In this way, the superradiant
states, where the coherence between all emitters is perfectly in phase, are replaced by
their subradiant counterparts, which results in a vast improvement of measurement
precision. We have demonstrated the concept for two emitters, both numerically
and analytically and we have conducted numerical investigations for larger systems
of di↵erent geometries, all showing an increase in precision when using the altered
Ramsey technique.

Further investigations with a focus on scalability and larger systems have shown
that a phase shift of ⇡ in the coherence between next neighbours seems to yield the
best overall precision. Additionally, we could show that subradiant decay rates scale
almost exponentially with the system size and thus hint at very promising results for
large systems. Lastly, a cube, posing as the unit cell for a 3D lattice, has been looked
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at and we found that for small lattice constants a phase altered Ramsey procedure as
we proposed clearly outperforms the regular Ramsey technique.

Now, we focused on preparing subradiant states directly, in contrast to altering
the phase of the coherence after the first half excitation to obtain subradiant states.
We saw that by using an excitation scheme, which features a direct phase imprinting
onto the individual emitters, we could realize an almost perfect Rabi ⇡-pulse from the
ground state to a targeted subradiant state, both for the single- and the two-excitation
manifold. We could verify numerically that these states are in fact subradiant as
they feature a vastly decreased spontaneous emission rate. We have suggested a
concrete realization with a magnetic field gradient in order to implement our scheme
experimentally.

Lastly, we have applied our methods and insights from free space optical lattices to
the investigation of a superradiant laser. Here, we basically took the same systems we
had been looking at before and put an optical cavity around them. We found that a
laser device with atoms in an optical lattice as its active medium is fairly insensitive
to the collective e↵ects among the atoms as long as they are placed su�ciently far
apart from each other. At very narrow atomic densities the laser su↵ers from collective
shifts and increased spontaneous emission, though, which makes it more sensitive to
other outside perturbations. For 87Sr in a magic wavelength lattice, however, these
e↵ects can safely be ignored.

In conclusion we found that using subradiant states in spectroscopy can dramatically
improve the sensitivity and precision of a setup relying on the Ramsey measurement
scheme. In that sense, it seems possible to achieve stabilities below the single atom
linewidth in future optical lattice atomic clocks. But, of course, long-lived states
can also be used in other applications. Long-time quantum memories for quantum
computing and quantum information as well as quantum communication setups could
all benefit from slowly decaying subradiant states.

10.2 Future Research Questions

A first and straight-forward next research target is optical lattices with a filling factor
of less than unity. This means a, so to say, random distribution of N emitters onto
M lattices sites with N < M . At larger distances, dipole-dipole interaction ebbs
away in general, yet, clusters of emitters can build up and act as one e↵ective dipole
with e↵ective shifts and decay rates. Numerical and possibly analytical calculations,
reducing the clusters to e↵ective dipoles, could be carried out. Additionally, employing
the mean-field approach of chp. 11 more involved calculations and actual simulations
of the measurement procedure could be performed.

Another idea would be to include atomic motion or temperature in our treatments.
So far, we have assumed the dipoles to be at fixed positions, characterized by a position
vector. Yet, classical or even quantum mechanical motional degrees of freedom could
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10.2 Future Research Questions

be included in the models. Of course, this quickly becomes very involved as the Hilbert
space would grow drastically. Yet, toy models or approximate larger models should be
tractable.

In terms of a superradiant laser, a more involved model could be developed. This
includes a realistic pumping mechanism, where phase factors and shifts introduced by
the pump laser are taken into account. A expanded level structure of the individual
atoms, i.e., three or four instead of just two levels, may be of interest. Also larger
atom numbers for the e↵ective medium could provide further insights into realistic
systems.

To name another area of interest, it could be worthwhile to look at the e↵ects of
dipole-dipole interaction in optical fibers in contrast to free space. Here, not every
wave vector is permitted, which should alter the results of the dipole-induced shifts
and collective emission rates noticeably. Experiments investigating superradiance in
fibers are currently being performed at various institutions.
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11 Publication: Optimized Geometries for
Future Generation Optical Lattice
Clocks

In this letter, which has been submitted to EPL, Sebastian Krämer and I tackle the
question of which geometry of an optical lattice is most favourable for subradiance
and thus a long probe time in a Ramsey spectroscopy setup. Sebastian came up with
our mean-field approach to the dipole-dipole coupled emitters and my contribution
was the idea to use this formalism for looking at optimal geometries as well as lots of
discussions and writing the article itself. This work has been published on May, 6th
2016 [230].

Abstract

Atoms deeply trapped in magic wavelength optical lattices provide a Doppler- and
collision-free dense ensemble of quantum emitters ideal for high precision spectroscopy
and they are the basis of some of the best optical atomic clocks to date. However,
despite their minute optical dipole moments the inherent long range dipole-dipole
interactions in such lattices still generate line shifts, dephasing and modified decay.
We show that in a perfectly filled lattice line shifts and decay are resonantly enhanced
depending on the lattice constant and geometry. Potentially, this yields clock shifts
of many atomic linewidths and reduces the measurement by optimizing the lattice
geometry, such collective e↵ects can be tailored to yield zero e↵ective shifts and prolong
dipole lifetimes beyond the single atom decay. In particular, we identify dense 2D
hexagonal or square lattices as most promising configurations for an accuracy and
precision well below the independent ensemble limit. This geometry should also be an
ideal basis for related applications such as superradiant lasers, precision magnetometry
or long lived quantum memories.

11.1 Introduction

Since the turn of the century the technology of manipulating and controlling ultracold
atoms with lasers has seen breathtaking advances [231–233]. Following the seminal
demonstration of a quantum phase transition in an optical lattice [234], nowadays the
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so-called Mott insulator state with exactly one atom per site can now be prepared
routinely [165, 235]. Experiments with photo-associated ultracold molecules have
reached a comparable control [219,236–238]. Coherent interactions between the atoms
at neighbouring sites can be tailored [239] and using large and su�ciently dense
ensembles one overcomes the weak single atom field coupling in free space [203].

For some of the world’s best optical clocks [240–242], atoms with a long-lived
transition are prepared in an optical lattice using a di↵erential light shift free (magic)
trapping wavelength [40, 95]. In principle, this provides for a Doppler free and,
for 3D confinement, also a collision free cold and dense ensemble with negligible
inhomogeneous broadening, eliminating major clock accuracy limitations. However,
when excited optically, emitters are still not completely independent as they will
inevitably interact via a long range resonant dipole-dipole coupling [243].

Figure 11.1: (Colour online) Scheme of a 2D optical lattice filled with clock atoms
interacting via dipole-dipole energy exchange ⌦ij and a collectively
modified spontaneous emission �ij at two di↵erent lattice constants
shown in blue and yellow. In a mean field treatment with translation in-
variance the sum over all interaction terms yields two e↵ective couplings
⌦e↵ and �e↵ only, which govern the approximate system dynamics.

At su�cient densities, i.e., small lattice constants, this dipole-dipole interaction
strength surpasses the excited state lifetime and collective excitations analogous to
excitons appear [179]. For distances much smaller than the wavelength as for polar
molecules in optical lattices they dominate the dynamics [244] and allow for studying
generic phenomena of solid state physics [231]. For clock transitions the extremely
tiny dipole moment keeps these interactions small. However, the excitons e↵ective
transition frequencies and their spontaneous decay rate is still dominated by dipole-
dipole interaction [144] substantially deviating from the bare atom case. Although not
fully reached in current setups, this constitutes a fundamental limit for the accuracy
and precision of corresponding clock setups.

128



11.1 Introduction

In an idealized Ramsey sequence for a clock setup, the first laser pulse creates a
product state of all atoms prepared in a 50% superposition of ground and excited
state with equal phase and all dipoles aligned in parallel. This state features the
maximally possible dipole moment and typically exhibits superradiance. Even a
tiny single particle spontaneous emission rate thus can be that strongly enhanced,
that collective decay becomes the dominant factor limiting measurement time and
precision [169]. In current setups based on 1D lattices with low filling this perturbation
is often negligible compared to other noise like collisions, transverse motion, black
body shifts or reference cavity fluctuations. However, in lattices with 3D confinement
and unit filling, these dipole-dipole interaction shifts are much larger than the atomic
linewidth and represent a significant inherent perturbation. Note that their absolute
magnitude scales with the atomic dipole moment and thus strongly depends on the
chosen transition lifetime, which can change by almost 6 orders of magnitude from a
calcium to a strontium clock. This, however, is very di↵erent from the single excitation
case, which has been investigated in recent experiments in Boulder [245].

In this work we quantitatively study such collective e↵ects on Ramsey spectroscopy
in perfect optical lattice configurations. As a key quantity to capturing the collective
modifications of the system dynamics, we use the decay and phase shift of the collective
dipole generated by the first Ramsey pulse, which determines the contrast and shift of
the central Ramsey fringes. Note, that due to the pairwise nature of dipole-dipole
interactions a simple rephasing pulse cannot correct these errors. We ignore interaction
induced perturbations during the Ramsey pulses, which introduce extra noise but
could be reduced by very fast pulses or improved sequences [246]. In practise we set
out to numerically solve the well established master equation for the atomic density
matrix ⇢ including optical dipole-dipole interaction obtained by tracing over the
electromagnetic vacuum field [136,139,243,247],

⇢̇ = i [⇢, H] + L[⇢]. (11.1)

As previously shown for small atom numbers (N < 12) a numerical solution of the
full master equation yields non-negligible shifts already [107,144]. Unfortunately, as
the Hilbert space grows exponentially with atom number, the full equation cannot be
solved for ensembles of a realistic size. Since for precision measurements we need to
evaluate collective e↵ects precisely, reliable and in a converging manner alternative
numerical methods are required. For larger ensembles at low densities a cluster
approach has produced first estimates of the scaling of the dephasing with the system’s
size and density [240]. In the opposite limit of a very high density, important self
synchronization e↵ects through dipole coupling were studied recently using strongly
simplifying assumptions for the coupling [208]. Synchronization via spin-spin coupling
can also occur via collisions at high density [248] or within an optical resonator [249].

In this letter we present an extensive numerical analysis of the collective dynamics
for fully populated lattices of di↵erent geometries and sizes containing a large or even
an infinite number of particles. Our primary goal is to estimate the magnitude of
the dipole phase shift and collective decay as a function of lattice and excitation
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geometry. Most interestingly, besides a resonant enhancement of shifts, decay and
dephasing at certain lattice spacings, we find cases where collective interactions even
lead to improvements of the maximally achievable measurement precision beyond the
independent particle level by virtue of subradiant states. Our considerations are based
on an idealized setup ignoring lattice shifts, thermal e↵ects or the hopping of atoms.

Numerically we apply an enhanced mean field approach related to cumulant ex-
pansion methods. It was developed in a recent paper, where we have also checked its
validity extensively [250]. Using this method we can scale up the ensemble towards
experimentally relevant atom numbers of up to N ⇡ 105 particles. If the particle
distribution exhibits symmetries numbers up to even 1010 are possible, well approxim-
ating infinite systems in 1D and 2D. The accuracy of the approach, however, breaks
down at very close distances, as it cannot correctly capture high order correlations.
Similar deliberations for classical dipoles have recently been put forward [251].

11.2 Model

We consider an ensemble of N identical e↵ective two-level atoms with transition
frequency !

0

and inverse lifetime � at positions ri (i = 1..N) interacting via optical
dipole-dipole coupling described by the Hamiltonian [136,243]

H =
X

ij;i 6=j

⌦ij(rij)�
+

i �
�
j . (11.2)

Here, �±
i denotes the raising (lowering) operator of the i-th atom and ⌦ij = 3

4

�G (k
0

rij)
represents the energy exchange with k

0

= !
0

/c = 2⇡/�
0

and rij = |ri � rj | being the
distance between atoms i and j. Collective spontaneous emission is accounted for by
a Liouvillian of the form [139,243]

L[⇢] =
1

2

X
i,j

�ij(rij)(2�
�
i ⇢�

+

j � �+

i �
�
j ⇢� ⇢�+
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where the o↵-diagonal rates �ij = 3

2

�F (k
0

rij) introduce super- and subradiant de-
cay [136] and �ii = �. Explicitly we have

F (⇠) = ↵
sin ⇠

⇠
+ �

✓
cos ⇠

⇠2
� sin ⇠

⇠3

◆
(11.4a)

G(⇠) = �↵cos ⇠

⇠
+ �

✓
sin ⇠

⇠2
+

cos ⇠

⇠3

◆
(11.4b)

with ↵ = 1 � cos2 ✓ and � = 1 � 3 cos2 ✓, where ✓ represents the angle between the
line connecting atoms i and j and the common atomic dipole orientation.
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11.3 Mean Field Approximation

11.3 Mean Field Approximation

To study large particle numbers we derive the equations of motion for the expectation
values of the Pauli operators for the k-th atom as detailed in the supplement [252].
Assuming a separable density operator and factorizing the two-particle correlations
via h�µ

i �
⌫
j i ⇡ h�µ

i ih�⌫j i for µ, ⌫ 2 {x, y, z} they transform to a closed set. As shown
previously [250] these equations still capture the major part of the interaction up
to a moderate interaction strength. To obtain even more accurate results one can
add second order pair correlation corrections. As we have shown in some earlier
work, these corrections significantly increase the precision of the results at increased
computational e↵ort [250] but do not induce qualitative changes.

11.4 Symmetric Configurations

For symmetric geometries with each atom initially in the same state and subject to the
same e↵ective interactions, the equations of motion for all particles become identical
and read

h�̇xi = ⌦e↵h�yih�zi � 1

2

⇣
� � �e↵h�zi

⌘
h�xi, (11.5a)

h�̇yi = �⌦e↵h�xih�zi � 1

2

⇣
� � �e↵h�zi

⌘
h�yi, (11.5b)

h�̇zi = ���1 + h�zi�� 1

2
�e↵

⇣
h�xi2 + h�yi2

⌘
. (11.5c)

Hence instead of solving a huge set of coupled nonlinear equations we need to determine
the e↵ective couplings, i.e.,

⌦e↵ =
NX

j=2

⌦
1j �e↵ =

NX
j=2

�
1j . (11.6)

Of course, such a rigorous symmetry condition is fulfilled for very few atomic dis-
tributions only. In these cases, however, the essence of the interactions within the
entire lattice is captured solely by two real numbers, the e↵ective coupling ⌦e↵ and
the collective decay rate �e↵ . In a clock setup one seeks to minimize the energy shifts
⌦e↵ and find configurations with a maximally negative �e↵ , minimizing decay and
allowing for an as long as possible interrogation time.

11.5 Finite Systems

Firstly, for finite symmetric configurations the e↵ective quantities can be calculated
easily. The most obvious symmetric structures are regular polygons. This might not be
the most practical example but nicely displays the underlying physics [253]. In fig. 11.2
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we compare the parameters for a square, a ten-sided and a 100000-sided polygon. The
square shows a behaviour quite similar to the underlying functions F (⇠) and G(⇠),
while the two larger polygons exhibit strong size dependent variations, particularly at
integral values of d/�

0

emerging from the accumulation of many 1/⇠ contributions.
Note that even with a relatively large atom spacing, cooperative collective e↵ects are
sizable and vary strongly with distance.

0 1 2 3

d/�0

-1

0

1

�e�

0 1 2 3

d/�0

�e�

Figure 11.2: (Colour online) Distance dependence of the e↵ective dipole coupling
⌦e↵ and �e↵ for a square (red), a ten-sided (blue) and a 100000-sided
(green) regular polygon. The fewer particles the closer the functions
resemble the underlying couplings ⌦ij and �ij . The divergences at
integral d/�

0

result from the 1/⇠ terms in F (⇠) and G(⇠).

11.6 Infinite Systems

In practise, extended regular systems, i.e., large periodic lattices, are experimentally
more relevant. Figure 11.3 depicts the e↵ective couplings for an infinite chain, a
square lattice and a hexagonal lattice. For comparison, we have overlaid the results
for smaller atom numbers to demonstrate finite size e↵ects, where even unphysical
values of �e↵ < �1 can appear. We observe stronger variations and again divergences
at integral values of d/�

0

. These manifest themselves in a much more pronounced
way at huge atom numbers and therefore underpin the importance of properly treating
long range interactions.

Note that for the two-dimensional square lattice and the hexagonal lattice �e↵

exhibits a broad minimum for the e↵ective decay close to �e↵ = �1 for d < �
0

, where
atomic decay is strongly inhibited. This favours such two-dimensional setups for lattice
clocks as subradiant decay will dominate the system dynamics allowing for much
longer Ramsey delay times and thus o↵ering a higher overall precision [169]. Similarly
we can identify lattice constants with a zero e↵ective shift and therefore increased
clock accuracy. Extending these calculations to three dimensional lattices, we find
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Figure 11.3: (Colour online) Distance dependence of the e↵ective quantities ⌦e↵ and
�e↵ for an infinite equidistant chain, a square lattice and a hexagonal
lattice (dashed black) compared to their not yet converged finite coun-
terparts of 10, 4 · 104 and 105 particles respectively (solid red). Again,
we find divergences at integral d/�

0

owing to the 1/⇠-terms in F (⇠)
and G(⇠). In the 2D configurations �e↵ plateaus at �1 for d < �

0

,
suggesting that this parameter range will be the most favourable for
clock setups as decay is strongly suppressed. Finite sample sizes in our
numerics can lead to strong oscillations of the e↵ective quantities at
small distances and even to unphysical values of �e↵ < �1.

that the necessary atom numbers to obtain smooth converging behaviour are beyond
our current numerical capabilities. For particle numbers of about 1012 the resulting
e↵ective quantities still fluctuate strongly, predicting potential problems for such 3D
clock setups. A demonstration of this e↵ect can be found in the supplement [252].

11.7 Tailoring Atomic Excitations

So far we have assumed a phase-symmetric excitation of all atoms by the first Ramsey
pulse. In a practical excitation scheme this corresponds to illumination at right angle.
In general, however, the e↵ective couplings ⌦e↵ and �e↵ will change, when we allow
for a local phase shift imprinted on the atoms. In a ⇡/2 Ramsey sequence [3] the
excitation phase appears on the excited state directly, i.e.,

| i =
NO

j=1

1p
2

⇣
|gi + ei��(j�1) |ei

⌘
. (11.7)

In our treatment we can exploit the system’s symmetry and absorb this phase into the
e↵ective couplings [252]. For �� = 0 we recover the above results. The closer the phase
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shift gets to �� = ⇡, however, the more half-integral values of d/�
0

yield minimal
shifts and the maximally negative �e↵ as seen in fig. 11.4. Since the emitted light has
interfered constructively at integral and destructively at half-integral distances for
�� = 0, it will do exactly the opposite at �� = ⇡. Furthermore, addressing atoms
transversally (�� = 0) seems more favourable at typical magic wavelength trapping
distances, e.g., d/�

0

⇡ 0.58 for 87Sr [40, 144, 166]. Again, for d ⌧ �
0

the mean field
approach breaks down and one should rather turn to the Dicke model [140], reducing
N two-level emitters to one e↵ective spin N/2-system [208].
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Figure 11.4: (Colour online) E↵ective interactions ⌦e↵ and �e↵ for an infinite chain
with spacing a where the spins are initially prepared with phase shift
�� between neighbouring spins. The dashed lines indicate parameters
with ⌦e↵ = 0 optimal for an optical clock.

Let us finally discuss the consequences for typical cases. Figure 11.5 shows the time
evolution of the average spin for an infinite chain initialized in a symmetric Ramsey
state with either no phase shift or a phase shift of �� = ⇡ between neighbouring
atoms. The lattice constants have been chosen to be approximately �

0

/2 as would be
typical [165]. We refrain from choosing exactly �

0

/2 to avoid the 1/⇠ divergence. We
observe that the dipoles’ lifetimes vary strongly, comparing the subradiant behaviour
(red) where the collective dipole lives much longer than the natural lifetime of the
atom to the superradiant (green) regime where the excitation vanishes very quickly.
Additionally, to highlight the validity of the mean field approach, we add the results of
a second order expansion simulation. Corresponding results for a full Ramsey sequence
are shown in the supplement.
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Figure 11.5: (Colour online) Three di↵erent examples for the time evolution of the
spin expectation values for a chain with spacing d where initially all
spins are prepared in a coherent superposition of ground and excited
state with a phase shift of ��. The parameters used are d = 0.792�

0

with �� = 0 (red triangles), where ⌦e↵ = 0 and �e↵ is nearly optimal,
as well as d = 0.49�

0

(green squares) and d = 0.51�
0

(blue circles),
both with �� = ⇡ which are close to a �e↵ discontinuity. The solid
lines correspond to a solution of a second order cumulant expansion
model with 200 particles and demonstrate a very good agreement with
the infinite mean field description.

11.8 Conclusions

In densely filled optical lattices dipole-dipole interaction and collective decay signific-
antly change the evolution of an induced collective dipole strongly a↵ecting Ramsey
spectroscopy. Due to the long range-nature of the coupling, sizable shifts appear
even for long lived clock states despite their minute dipole moment, which limits the
accuracy and precision of Ramsey spectroscopy. Shifts and dephasing in large systems
strongly depend on the dimensionality and geometry of the lattice, exhibiting resonant
enhancements at particular lattice constants. While at current operating densities for
Strontium [240–242] these shifts are smaller than other technical imperfections, they
constitute inherent fundamental perturbations even in perfectly filled lattice clocks.

In this work, we have identified optimal operation geometries, which combine a
negligible e↵ective shift with a strong suppression of decay. In particular, for a 1D
lattice with a tailored excitation angle and for a 2D hexagonal lattice favourable
operation parameters for future generation clock setups were found. These results
appear to be robust against small position fluctuations or a few lattice defects. In this
sense it seems possible to implement a high density dark exciton based atomic clock
geometry, where the fundamental limit to line shifts is many orders of magnitude below
a single Hz and one gets almost unlimited exciton life times. In 3D the interactions
are particularly sensitive to a change in lattice constant and boundary e↵ects, which
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dominate even for billions of particles rendering such setups very challenging [252].

We have considered perfectly filled and designed optical lattices, while in any
experimental setup some imperfections in the form of defects or position fluctuations
will be present. This can be of fundamental quantum nature [254,255] or simply stem
from technical imperfections. Interestingly, at least in 1D geometries we found that this
even leads to strong subradiant behaviour and thus could be a useful resource [200,210].
This e↵ect has to be confirmed for higher dimensions, though.

While for most considerations we have focused on the case of clock transitions, the
same physics is present in a more prominent and experimentally easier observable
form for broader transitions. Optimizing geometries will also be relevant for devices
such as superradiant lasers [159,190] or lattice based optical memories.
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11.9 Supplementary Material

11.9.1 Derivation of the Mean-Field Equations

Starting from the full multiparticle density operator ⇢ our master equation allows to
obtain the following equations for the individual spin expectation values immediately

h�̇x
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(11.8c)

Assuming a spatially separable state ⇢ =
N

k ⇢k leads to the lowest order mean field
equations used in the letter.

11.9.2 Mean Field Equations with Tailored Excitation Phase

At zero temperature the ground state ⇢ =
N

k (|gi (hg|)k is separable and in an
idealized standard Ramsey procedure the first pulse would create a product state
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of equal weighted superpositions ⇢ =
N

k 1/2 ((|gi + |ei)(he| + hg|))k. This is the
generic initial state we use in our work to study dipole-dipole interaction. In fact,
this state possesses the maximal collective dipole moment and therefore shows strong
interactions.

Of course, in any real setup this preparation step is not perfect as interactions
are present during the excitation pulse and the excitation laser carries an intensity
and phase gradient. Some of the errors can be corrected in improved excitation
schemes [169,246]. However, particularly in extended systems a phase gradient is hard
to avoid and will strongly influence the system dynamics. Fortunately, one can show,
that a known phase gradient will not complicate the calculations too much. If we allow
for the individual atomic states to bare a spatially dependent phase of �� on the
excited state, i.e., | ki = 1p

2

(|gi + exp(i�k) |ei), we can absorb this into our equations

e�ciently. Using the abbreviations ⌦cos

kj = ⌦kj cos(�k ��j) and ⌦sin

kj = ⌦kj sin(�k ��j)
we obtain the following modified equations of motion

d
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h�̃x
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X
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X
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z
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d
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We see that the following definitions prove to be very helpful

⌦cos

k =
X

j;j 6=k

⌦kj cos(�k � �j) ⌦sin

k =
X

j;j 6=k

⌦kj sin(�k � �j) (11.10a)

�cos

k =
X

j;j 6=k

�kj cos(�k � �j) �sin

k =
X

j;j 6=k

�kj sin(�k � �j). (11.10b)

Again, if we consider highly symmetric configurations where ⌦f = ⌦f

k and �f = �f

k and

137



11 Publication: Optimized Geometries for Future Generation Optical Clocks

the rotated states are initially identical we can define the e↵ective rotated quantities

⌦̃e↵ = ⌦cos � 1

2
�sin (11.11)

�̃e↵ = �cos + 2⌦sin (11.12)

which lead to a closed set of simplified e↵ective equations as well, i.e.,

d

dt
h�̃xi = ⌦̃e↵h�̃yih�zi � 1

2
�h�̃xi +

1

2
�̃e↵h�̃xih�zi (11.13a)

d

dt
h�̃yi = �⌦̃e↵h�̃xih�zi � 1

2
�h�̃yi +

1

2
�̃e↵h�̃yih�zi (11.13b)

d

dt
h�zi = ���1 + h�zi�� 1

2
�̃e↵

⇣
h�̃xi2 + h�̃yi2

⌘
. (11.13c)

Note that such a phase gradient tends to mix the real and imaginary part of the
interaction terms.

11.9.3 E↵ective Quantities for Cubic Lattices in 3D

In a cubic 3D lattice the number of neighbours at a given distance r grows approxim-
ately as r2. Hence, one cam expect a slower convergence with distance. This problem
is increased as the number of emitters to be considered grows with the third power
of the system size. In contrast to 1D and 2D, together these two scalings prevent a
convergence of the e↵ective interaction parameters in the range of tractable lattices
sizes of up to N = (104)3 = 1012 sites. Anyway, this is beyond experimentally realistic
atom numbers so that we have to live with finite size e↵ects.

In order to demonstrate the very slow convergence of the infinite range mean field
model, we present some typical intermediate result for a 3D cubic lattice. In fig. 11.6
we depict the e↵ective coupling strengths ⌦e↵ and �e↵ for the innermost two-level
system in a cubic lattice of about 8 · 109 particles, i.e., 2000 particles in each direction.
We obtain strong and very rapid oscillations of the shifts as a function of the lattice
constant. Notice, that 1/r-contributions as discussed in the letter will show up for
planar and cubic diagonal distances of

p
2 · r and

p
3 · r as well. Increasing the atom

number further still leads to changes of this pattern, so no final conclusions about
physical properties and the behaviour of a 3D cubic lattice can be obtained. However,
perturbations of up to an order of magnitude larger than the linewidth as well as
strong finite size shifts can be expected. In this case it is di�cult to suggest an optimal
lattice constant for a clock setup, except for avoiding certain resonances and choosing
a region of about d ⇡ 3�/4.

11.9.4 Ramsey Spectroscopy

The e↵ective coupling and decay parameters ⌦e↵ , �e↵ characterize the interaction
induced perturbation of the individual spin dynamics. Consequently, they will alter the
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Ramsey signal by introducing shifts of the fringes and modifications of the maximally
obtainable contrast. As the actual connection between the magnitude of these e↵ective
couplings and their quantitative e↵ect on the signal is nontrivial, we demonstrate
the alterations of the Ramsey signal in the following examples. Using the previously
derived equations of motion, it is straight forward to simulate the results of an ideal
Ramsey sequence. By starting with a ⇡/2-pulse all spins are rotated into the x-
direction of the Bloch sphere. For a time �t the system evolves according to the
equations

h�̇xi = ��ah�y
ki + ⌦e↵h�yih�zi � 1

2
�h�xi +

1

2
�e↵h�xih�zi (11.14a)

h�̇yi = �ah�x
ki � ⌦e↵h�xih�zi � 1

2
�h�yi +

1

2
�e↵h�yih�zi (11.14b)

h�̇zi = ���1 + h�zi�� 1

2
�e↵

⇣
h�xi2 + h�yi2

⌘
, (11.14c)

where �a = !
0

�!L is the detuning between the probe laser and the atomic transition
frequency. After this free evolution a second ⇡/2-pulse is applied and, finally, the
expectation value of �z is measured. For a given system characterized by the e↵ective
quantities ⌦e↵ and �e↵ the result of this measurement depends on the waiting time as
well as on the detuning �a. In fig. 11.7 the outcome of this numerical experiment is
shown for three di↵erent realistic sets of e↵ective quantities. The decisive quantity
for the accuracy with regards to atomic clocks is the shift of the fringes due to the
dipole-dipole interaction which can be obtained by measuring the shift of the maxima
of the Ramsey fringes. The shifts for the chosen examples are shown in fig. 11.8. On
the other hand the slope of the fringes at their roots is the determining factor for the
best achievable experimental precision. The numerical results are shown in fig. 11.9.
As seen in fig. 11.10 the maximal shifts depend on ⌦e↵ only, while the maximal slope
at zero points is governed by �e↵ . For realistic values for the e↵ective quantities this
means the accuracy can be limited to � and the achievable precision can vary by a
factor of 5.
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Figure 11.6: E↵ective quantities ⌦e↵

i and �e↵

i as experienced for the innermost spin
inside a cube consisting of 2001 ⇥ 2001 ⇥ 2001 spins in a cubic lattice
configuration depending on the lattice spacing d. Even for very small
changes of the lattice spacing the mean net-e↵ect of all other spins will
change dramatically. Unphysical values of �e↵ < �1 emerge due to
numerical artifacts and too slow a convergence.
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Figure 11.10: (a) Shift of Ramsey fringes depending on the e↵ective coupling ⌦e↵

after t = 15��1. The di↵erent lines represent di↵erent choices of �e↵ ,
which hardly influence the result. The fringe shifts follow the e↵ective
mean field dipole coupling ⌦e↵ almost linearly and thus can be read
o↵ from the figures in the main manuscript. (b) Maximally achievable
slope at roots depending on �e↵ . The result is independent of the
choice of ⌦e↵ . Note that a negative �e↵ improves the measurement
precision beyond the independent atom value.
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In this letter Ana Predojevic, Gregor Weihs and their team look at coherence and
time-bin entanglement from a quantum dot. They have approached our group for
theory support and my contribution lies in developing and investigating a model, where
intensity-dependent dephasing causes a decrease in the pair photon signal that can be
obtained from emissions of the quantum dot. The manuscirpt has been published in
PRB on May, 12th 2016 [256].

Abstract

We report a study on coherence of excitation of single quantum dots. We address the
coherent excitation of biexciton, the process that is indispensable for deterministic
photon pair generation in quantum dots. Based on theoretical modelling we optimized
the duration of the excitation pulse in our experiment to minimize the laser-induced
dephasing and increase the biexciton-to-background single exciton occupation probab-
ility. An additional e↵ect of this approach is a high degree of time-bin entanglement
with a concurrence of up to 0.78(6) and a 0.88(3) overlap with a maximally entangled
state.

12.1 Introduction

Single semiconductor quantum dots, due to their discrete energy structure, constitute
an antibunched single photon source at a well defined frequency and with inherently sub-
Poissonian statistics [257,258]. They generate single photons through a recombination
of an electro-hole pair formed by an electron from the conduction band and a hole from
the valence band. In a more refined operation mode employing biexcitons, quantum
dots can provide pairs of photons emitted in a fast cascade very similar to the original
atomic cascade experiment by Aspect et al. [259]. It has been demonstrated that in
the absence of the fine structure splitting of the bright exciton levels, such a cascade
exhibits polarization entanglement [260–265].

Entanglement of photons is a fundamental resource for long distance quantum
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communications [266,267], where it forms the central part of various quantum com-
munication protocols like teleportation [268] and entanglement swapping [269]. In
addition, it is an essential element of linear optical quantum computing [270].

The ability to achieve entanglement of photons from a quantum dot is not limited
to polarization. Recently, it has been shown that the biexciton-exciton cascade can
also be entangled in its emission time (time-bin) [271]. Apart from the obvious goal
to generate entangled photon pairs, there are further reasons for investigating the
time-bin entanglement in photons emerging from a quantum dot. Namely, this method
of entanglement calls for a coherent excitation and therefore is an excellent tool for
investigating the coherence properties of a quantum dot system. Specifically, a quantum
dot system that exhibits a high degree of coherence that can be combined with resonant
excitation (especially two photon-resonant excitation of the biexciton [272, 273]) is
a sine qua non for optimal use of quantum dot photons in quantum information
processing.

Here, we report a study that relates the properties of the excitation pulse to the
excitation coherence, photon generation probability, and the degree of entanglement
in quantum dots. Our study addresses yet unexplored behaviour of resonantly excited
quantum dot systems when exposed to varied excitation conditions. We indicate an
optimized operation regime for the system under consideration and provide guidelines
on how to extend this study to other similar systems (see supplementary material). Our
study also shows a generalized method to achieve a very high photon pair generation
probability from quantum dots. Furthermore, we report on an unprecedented degree
of time-bin entanglement from a single quantum dot. The requirements to generate
this type of entanglement include the suppression of the single exciton probability
amplitude in the excitation pulse and the lowest possible degree of dephasing caused
by the laser excitation. These conditions constitute contradictory demands on the
excitation pulse-length and its intensity. We include a study of these limitations
from an experimental and a theoretical point of view and we indicate key parameters
required in order to achieve a high degree of time-bin entanglement.

12.2 Biexciton Generation

The central goal of the photon pair generation from the quantum dot systems is to get
exactly one photon at the biexciton and one photon at the exciton frequency that are
produced within a short time interval and with a well defined sum phase. In fact, the
exciton and biexciton transition frequencies are well separated, so that excitation light
that is tuned between these two frequencies produces a resonant two-photon coupling
between the ground and the biexciton state (inset fig. 12.1).

To predominantly generate single pairs of photons from biexciton decay, one needs
to avoid populating the single exciton state as well as the decay and re-excitation of
the biexciton state within one laser pulse. This creates conflicting requirements for
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the excitation pulse length. Namely, short pulses suppress dephasing and decay within
the pulse duration but have large bandwidth and high intensity, which enhances the
o↵-resonant generation of single excitons and power induced phase shifts. Longer
pulses make the system more vulnerable to background dephasing, decay, and multiple
excitations. A typical method to characterize the coherence of the excitation process
is a study of the Rabi oscillations. Additionally to Rabi oscillations, here, we used
time-bin entanglement to test the coherence of excitation. In particular, the creation
of time-bin entanglement requires a phase stable generation of subsequent photon
pairs, which is hampered by the phase uncertainty in the biexciton generation as well
as any phase instability of the pump interferometer; the latter being very small in our
system.

QD

exciton

biexcitonlaser excitation

D
X

X

D
XX

XXP

 

X
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XX
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X
V  

XX
V

 

  

 

 

Laser

earlylate

Figure 12.1: (Colour online) Schematic of time-bin entanglement. The quantum dot
system (QD) is excited by two consecutive pulses obtained from an
unbalanced Michelson interferometer shown on the left. The relative
phase between these pulses is �P . The state analysis is performed using
additional two interferometers, one for the exciton and the other for
the biexciton photons. These two interferometers have their respective
phases, �X and �XX . The photons are detected upon leaving the
analysis interferometers using detectors DX and DXX . The level scheme
depicts the quantum dot excited resonantly from the ground state |gi
to the biexciton state |bi using a two-photon excitation. A pulsed laser
populates the biexciton via a virtual level (dashed grey line). The
system decays emitting a biexciton-exciton photon cascade (XXV and
XV or XXH and XH).

12.3 Time-Bin Entanglement

This technique encodes quantum states in a superposition of the system’s excitation
within two distinct time-bins early and late. This type of entanglement (encoding)
is important for optical-fibre based quantum communication [274] due to the fact
that polarization entanglement can su↵er from degradation in an optical fibre outside
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laboratory conditions [275]. In addition, a method to perform linear optical quantum
computing with photons entangled in time-bin has been demonstrated recently [276].
Time-bin entanglement is generated in a very similar manner for both parametric
down-conversion [277] and atom-like systems [271] and in its simplest form it relies
on post-selection in order to be measured. Such a scheme is depicted in fig. 12.1.
The system is addressed by two excitation pulses, denoted the early and the late
pulse. These are derived from an unbalanced interferometer, the so-called pump
interferometer. If the system is driven with a very low probability to be excited,
on average only one of these two pulses will actually create a photon pair. In other
words, the system is placed in a superposition of being excited by the early or by the
late pulse. The relative phase, �P , between the pulses determines the phase of the
entangled state. This phase is written onto the quantum dot system using a coherent
resonant excitation from the ground to the biexciton state. For comparison, note that
in the process of parametric down-conversion the phase stability of the laser combined
with the phase matching process in the extended medium ensures a constant phase
relation between subsequent photon pairs. The time-bin entangled state reads

|�i =
1p
2
(|earlyiXX |earlyiX + ei�

P |lateiXX |lateiX), (12.1)

where �P is the phase of the pump interferometer generating the two excitation
pulses and |earlyi (|latei) denote photons generated in an early (late) time-bin. The
subscripts XX and X identify biexciton and exciton photons, respectively. The analysis
of the generated state is performed by two additional unbalanced interferometers,
one for the exciton and one for the biexciton photons. The schematics of the three
interferometers is presented in fig. 12.1.

12.4 Theoretical Model

To determine an optimized parameter regime we use a standard Lindblad master
equation ⇢̇ = i [⇢, H] + L (⇢) based upon an e↵ective quantum dot Hamiltonian of the
form

H =
1

2
⌦(t) (|gi hx| + |xi hb| + h.c.)

+ (�x � �b) |xi hx| � 2�b |bi hb|
(12.2)

and a Liouvillian damping operator

L =
X

i

Li =
X

i

�i

2

⇣
2A†

i⇢Ai � AiA
†
i⇢� ⇢AiA

†
i

⌘
, (12.3)

where
Â

1

= |bi hx| , Â
2

= |xi hg| (12.4)
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describe biexciton and exciton decay, respectively, and the corresponding dephasing
mechanisms are

Âbb = (|bi hb| � |xi hx|) (12.5)

Âxx = (|xi hx| � |gi hg|) . (12.6)

In eq. 2, �x is the energy di↵erence between the virtual level of the two-photon
transition and the exciton energy, while �b is the detuning between the two-photon
resonance and the energy of the laser driving the system. More details can be found
in the supplementary material.

We assume a Gaussian excitation laser pulse of a width � and a time-dependent amp-

litude ⌦(t) = ⌦
0

· exp
⇣
� ln(2) (t � t

0

)2 /�2

⌘
. We calculate the emission probabilities

(Px(tf ) and Pb(tf )) as

Pi(tf ) = �i

Z t
f

0

hi| ⇢(t0) |ii dt0 (12.7)

for di↵erent pulse lengths and dephasing models.

The most important and straightforward result of our model is shown in fig. 12.2.
It shows the theoretically predicted Rabi oscillations for di↵erent pulse length. The
constant dephasing parameters are taken from the g(1)(⌧) field correlation function
measurements performed on exciton and biexciton photons. From this plot is obvious
that the pulse length influences the coherence of the Rabi oscillations.

Besides a constant background dephasing rate of the freely evolving quantum dot,
we also investigated the presence of the pump laser that leads to an extra and often
dominant intensity-dependent dephasing rate

�
⌦

(t) = �I0 ·
✓

⌦(t)

⌦
0

◆n
p

(12.8)

as detailed in [278], where ⌦
0

is 1 THz in the natural units of our treatment and
�I0 is the amplitude of the intensity-dependant dephasing rate. Depending on the
exponent np of this type of dephasing, either longer or shorter pulses lead to less phase
uncertainty in the generated photon pair.

However, as shown in fig. 12.3a, we found that compared to �I0 , the magnitude of
the exponent np does not play such a great role in damping of the Rabi oscillations.
Fitting the theory model to our measurement results shows that �I0 already yields
strongly damped Rabi oscillations, while both exponents np = 2 and 4 are consistent
with the experimental data, as shown in fig. 12.3b and fig. 12.3c. From fitting the
Rabi oscillations data we obtain �I0 ⇡ 0.0349 and �I0 ⇡ 0.0219 for exciton and
biexciton, respectively. Although our model is phenomenological �I0 is our only free
parameter. The remaining parameters (in detail given in supplementary information)
are experimentally measured values. Using these rates we can predict the ratio of
biexcitons generated via a two-photon excitation to direct single excitons, see fig. 12.4a.
Note, that as the first is a two-photon and the latter a single-photon process, the
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Figure 12.2: (Colour online) Rabi oscillations for constant dephasing as a function
of ⌦2� . The emission probability for the biexciton, Pb, (left) and the
exciton, Px, (right) level are shown. The Rabi oscillations damping is
very dependant on the length of the excitation pulse.

second one will dominate at low powers despite of being non-resonant. As shown in
fig. 12.4a better ratios are obtained at longer pulse durations. In fig. 12.4b the total
exciton photon generation is depicted, which includes photons from a direct excitation
of the exciton as well as those generated from the decay of the biexcitons.

12.5 Entanglement

In the experiment the length of the laser pulses (4 ps to 20 ps) was varied by means
of a pulse-stretcher. The laser wavelength was 918.7 nm, which is half way between
biexciton and exciton emission (Figure 12.1). The distance between the exciton and
the biexciton line in the quantum dot emission spectrum is 1.8 nm. We measured
the degree of time-bin entanglement for five di↵erent pulse lengths: 4 ps, 9 ps, 12 ps,
15 ps and 20 ps. To characterize the entanglement we performed state tomography
where 16 projective measurements are made in three orthogonal bases (one time
basis and two energy bases) [279, 280]. For a 12 ps long pulse the fidelity of the
reconstructed two-photon density matrix with the maximally entangled state was
found to be F = 0.88(3) while the concurrence was C = 0.78(6). The reconstructed
density matrix for this measurement is shown in fig. 12.5. The values for fidelity,
concurrence, and coherence of the reconstructed density matrix for the other applied
pulse lengths are given in tbl. 12.1.
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pulse length (ps) concurrence fidelity coherence
4 0.56(7) 0.78(3) �0.28(3)
9 0.71(6) 0.83(3) �0.36(3)
12 0.78(6) 0.88(3) �0.39(3)
15 0.78(5) 0.88(3) �0.40(3)
20 0.61(5) 0.80(3) �0.32(3)

Table 12.1: Values for the fidelity with the maximally entangled Bell state, con-
currence, and coherence (maximal o↵-diagonal element of the density
matrix)

12.6 Entanglement Requirements

There are two types of factors limiting the degree of time-bin entanglement obtainable
from an atom-like system: those associated with excitation and those associated with
the intrinsic system coherence. The first type includes the so-called double excitations.
In our measurements we drive the system with 6% probability to be excited, therefore,
it will happen in 0.062 of the cases that the system is excited by both the early and
the late pulse. These events cause the time-basis correlations to be less than unity
and they also contribute to an incoherent background in both energy bases. The e↵ect
of double excitations can be eliminated through the use of deterministic schemes for
generation of time-bin entanglement [281–283].

The time-basis measurements are not a↵ected by the decoherence-induced reduction
of the visibility, while the energy-bases measurements are. An intuitive picture of
how the decoherence a↵ects the time-bin entanglement is the following: the pump
interferometer phase, �P , is transferred onto the quantum dot by means of resonant
excitation. Any incoherence in the process of resonant excitation as well as in the
relation between the ground and the biexciton state will lead to an uncertainty in the
phase of the biexciton amplitude, which determines the relative phase of the entangled
state components. This will reduce the visibility contrast and decrease the values of
entanglement measures and indicators like concurrence and fidelity.

12.7 Conclusion

We have investigated the problem of decoherence of excitation process in quantum dots.
Our theoretical study indicates that with respect to the parameters of our quantum dot
system we can choose an optimized pulse duration and minimize the decoherence. Our
measurements are consistent with the theoretical study that indicates the conditions
needed to achieve coherent excitation and high photon pair generation probability.
Additionally, using the same approach, we observed a very high degree of time-bin
entanglement of the emitted photon pairs. This is possible because a high degree of
time-bin entanglement is in a direct relation with coherence of excitation process. The
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same theoretical study can be readily extended to other quantum dot systems where
it can be used to determine the set of optimal parameters.

Theoretical study we presented here addresses a system that is driven by means of
two-photon resonant excitation of the biexciton. Here, the non-resonant excitation of
the exciton has emerged as the dominant dephasing process. We did not address the
decoherence mechanisms that have microscopic origin, which were in depth studied
in [284] and references within. Such decoherence mechanisms are easier to study
through resonant excitation of a single exciton.

Beyond the decoherence induced by the excitation laser pulse quantum dots often
face the decoherence that depends predominantly on the degree of interaction of the
quantum dot with its semiconductor environment. Here the coherence can be increased
relative to the lifetime of the emitted photons by the use of quantum dots embedded
in micro-cavities [261,285], particularly ones that are resonant to both exciton and
biexciton photons [261].

Our result has one more important consequence. It indicates an existence of a trade-
o↵ between the excitation-pulse length and the biexciton binding energy. In particular
it favours the use of quantum dots with large biexciton binding energy that in return
allow for use of short excitation pulses. Such excitation pulses reduce the excitation
jitter and are therefore more favourable for quantum information applications [286].
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the Canadian Institute for Advanced Research through its Quantum Information
Processing program. G.S.S. acknowledges partial support through the Physics Frontier
Center at the Joint Quantum Institute (PFC@JQI). A. P. would like to thank the
Austrian Science Fund for the support provided through project number V-375. L.O.
and H.R. would also like to thank the Austrian Science Fund for support provided
through SFB FoQus S4013. T. H. is receiving a DOC scholarship from the Austrian
Academy of Sciences.

12.8 Supplemental Material

The quantum dot sample was held at a temperature of 4.8 K. It contained low density
self-assembled InAs quantum dots embedded in a planar micro-cavity, increasing the
vertical collection of photons. The excitation light was derived from a tunable 82 MHz
repetition rate Ti:Sapphire pulsed laser.

To give a comparison to time-bin entanglement results obtained using parametric
down-conversion we measured visibilities in three orthogonal bases. For the state
generated using 12 ps pulses we find the visibilities of 94(2)% in the classically
correlated basis (time basis) and 74(5)% and 67(5)% in the bases that indicate
entanglement (energy bases).
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12.8.1 Theoretical Model

The quantum dot system having a ground state |gi, an intermediate exciton state |xi
and a biexciton state |bi is described by the Hamiltonian

H =
1

2
(⌦

1

|gi hx| + h.c.)+
1

2
(⌦

2

|xi hb| + h.c.)+(�x � �b) |xi hx|�2�b |bi hb| , (12.9)

where ⌦
1

and ⌦
2

are the (identical) Rabi frequencies emerging from the coupling
of the ground and exciton and the exciton and biexciton state, respectively, by the
excitation laser pulse. Here, �x is the di↵erence between the virtual two-photon level
and the exciton state of the quantum dot, while �b is the detuning between the virtual
two-photon level and the laser driving the quantum dot. In our experiment, we drive
the two-photon virtual level resonantly, therefore �b = 0. �x has been measured to
be �x = 2⇡ · 0.335THz.

Our quantum dot system is subject to dissipative processes, therefore, we introduce
the definition of a dissipator for the operator Â as

D(Â) := 2Â⇢Â† � Â†Â⇢� ⇢Â†Â. (12.10)

With this definition we can now easily write down the loss processes in the system,
which are

L
1

=
�b

2
D (|bi hx|) (12.11)

L
2

=
�x

2
D (|xi hg|) (12.12)

L
3

=
�deph

b

2
D (|bi hb| � |xi hx|) (12.13)

L
4

=
�deph

x

2
D (|xi hx| � |gi hg|) , (12.14)

where the first two expressions consider population loss by spontaneous emission with
the rates �b for the biexciton and �x for the exciton. These rates were measured to
be �b = 1/771THz and �x = 1/405THz. On the other hand, L

3

and L
4

account for
the dephasing between the biexciton and exciton and the exciton and ground state,
respectively. The rates have been assumed equal and are of the form

�deph

b = �deph

x = �I0 · ⌦n
p (12.15)

where �I0 is the amplitude of the intensity-dependent dephasing and np represents
the exponent of the intensity dependence. In our study we investigated np = 2 and
np = 4, hence the linear (np = 2) and the quadratic (np = 4) intensity dependence
of the dephasing. The value of �I0 has been obtained by fitting the model to the
experimental data.

The full Liouvillian is hence

L = L
1

+ L
2

+ L
3

+ L
4

(12.16)
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and the time evolution of our system is governed by the master equation

⇢̇ = i [⇢, H] + L. (12.17)

The coherent excitation is described by time-dependent Rabi frequencies that for a
Gaussian laser pulse envelope follow

⌦
1

= ⌦
2

= ⌦ · exp

 
�2 ln(2) (t � ti)

2

�2

!
, (12.18)

where � is the pulse length. In the experiment the pulse length can be varied from
4 ps to 20 ps. ti is the center of the Gaussian pulse in the time domain.

12.8.2 Rabi Oscillations

In order to gain some insight into the dynamics of our system we plot the normalized
emission probabilities

Pb(tf ) = �b

Z t
f

0

hb| ⇢(t0) |bi dt0 (12.19)

Px(tf ) = �x

Z t
f

0

hx| ⇢(t0) |xi dt0 (12.20)

as a function of ⌦2�, which is proportional to the energy per pulse (Figure 12.6).
Here, tf is the time at which the photon is detected. For the constant dephasing the

numbers �deph

x = 1/119THz and �deph

b = 1/211THz were used. These specific numbers
are chosen in congruence with the g(1)(⌧) field correlation function measurements
performed on exciton and biexciton photons, respectively.

As also explained in the manuscript, the population loss does not necessary need to
originate exclusively from constant dephasing. If we introduce the intensity-dependent
dephasing, given by eq. 8 in the manuscript, such that �I0 = 0.05 for np = 2 and
np = 4, we obtain the normalized emission probabilities depicted in fig. 12.7.

12.8.3 Population at Low Excitation Power

Using second order time-dependent perturbation theory we can calculate the ratio
between Pb and Px for small driving strengths ⌦. For this we will consider only
the coherent part of the time evolution and neglect damping and dephasing. Our
Hamiltonian therefore will have the following form

H = H
0

+ V =

0@0 0 0
0 � 0
0 0 0

1A+

0@0 ⌦ 0
⌦ 0 ⌦
0 ⌦ 0

1A .
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The formal solution of the Schrödinger equation in the interaction picture for a
time-dependent perturbation V in the basis {|ni} is

cn(t) = cn(0) � i
X

k

Z t

0

dt0 hn| V (t0) |ki exp
��i(Ek � En)t0

�
ck(t

0).

By recursively inserting this equation into itself we obtain the first-order

cn(t) = cn(0) � i
X

k

Z t

0

dt0 hn| V (t0) |ki exp
��i(Ek � En)t0

�
ck(0)

and the second order perturbative solution, i.e.,

cn(t) =cn(0) � i
X

k

Z t

0

dt0 hn| V (t0) |ki exp
��i(Ek � En)t0

�
·
"
ck(0) � i

X
k0

Z t0

0

dt00 hk| V (t00)
��k0↵ exp

��i(Ek0 � Ek)t
00� ck0(0)

#
.

When multiplying this expression we use that V (t) is time-independent, while Eab =
Ea � Eb. We obtain

cn(t) =cn(0) +
X

k

hn| V |ki ck(0)
exp (�iEknt) � 1

Ekn

+
X
k,k0

hn| V |ki hk| V ��k0↵ ck0(0)

Ek0k

✓
exp (�iEk0nt) � 1)

Ek0n
� exp (�iEknt) � 1)

Ekn

◆
.

Our quantum dot system has three states |gi, |xi and |bi. This system is initially in
the ground state, which means cg(0) = 1. This condition together with the structure
of our perturbation (i.e., only coupling ground and exciton and exciton and biexciton
states) immediately reduces the sums to exactly one single term. Hence,

cx(t) =
⌦

�
sin

✓
�t

2

◆
exp

✓
�i

�t

2

◆
cb(t) =
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�
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2

�
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2

�
�

� i
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2

�
2
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)#

and the emission probability ratio therefore yields

Pb

Px
=
�b

R t
0

|cb(t0)|2 dt0

�x

R t
0

|cx(t0)|2 dt0
⇠

⌦

4

�

5

⌦

2

�

3

=
⌦2

�2

,

which goes to zero for ⌦ ! 0.
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12.8.4 Detection Probabilities for Two Pulse Excitation

Up to a geometric factor, the field emitted by a single quantum emitter at a position
~x is proportional to its dipole operator �̂ evaluated at the proper retarded time, i.e.,

Ê+(~x, t) ⇠ ~e(~x) · �̂(t � R/c), (12.21)

where ~e(~x) represents the geometrical emission distribution and R the optical path
length between emitter and detector. In our case we have the two emission dipoles
that correspond to the exciton transition �̂x = |gi hx| and the biexciton transition
�̂b = |xi hb|. If we assume that the frequencies of the biexciton and the exciton photon
are su�ciently distinct to allow distinguishable detection at separate detectors, we
can approximate the fields at the detectors by

Ê+

x (t) = ⌘(�̂x(t � Rx/c) + ei�
x �̂x(t � Rx/c � ⌧)) (12.22)

Ê+

b (t) = ⌘(�̂b(t � Rb/c) + ei�
xx �̂b(t � Rb/c � ⌧)). (12.23)

Here, ⌘ is a general detection e�ciency subsuming geometry and the actual detector
e�ciency ⌘D. The angles �x and �xx are the individual phase shifts in the x and
xx interferometers and ⌧ is the delay time between the two pulses. Using these
expressions and assuming a su�cient time delay between the two pulses, so that all
excitations have decayed in the dot upon arrival of the second pulse, we can factorize
some expectation values and obtain the following average count rates,

Ix(t) =
D
Ê�

x (t)Ê+

x (t)
E

= ⌘2

D
e�i�

x(�†
x(t + ⌧)�x(t) + ei�

x�†
x(t)�x(t + ⌧)) (12.24)

+Px(t) + Px(t + ⌧)i (12.25)

⇡ ⌘2 (cos(�x) ⇢gx⇢xg + ⇢xx) (12.26)

Ib(t) = ⌘2

D
Ê�

b (t)Ê+

b (t)
E

⇡ ⌘2 (cos(�xx)⇢xb⇢bx + ⇢bb) . (12.27)

The corresponding probabilities can be obtained from our above calculations by
integration over the pulse duration. Note, that some phase dependence of the signal
can survive from the interference of the Rayleigh component of the scattering. In a
similar way, for the two photon coincidence count probabilities we find

Pbx(t) = ⌘4

D
Ê�

b (t)Ê�
x (t)Ê+

x (t)Ê+

b (t)
E

= ⌘4 (cos (�x + �xx)⇢gb⇢bg

+(1 + ⇢xx)⇢bb + 2 cos(�xx)⇢xb⇢bx)
(12.28)

Pxb(t) = ⌘4

D
Ê+

b (t)Ê�
x (t)Ê+

x (t)Ê+

b (t)
E

= ⌘4⇢xx⇢bb, (12.29)

where Pbx(t) corresponds to detecting the biexciton photon before the exciton photon
and Pxb(t) is the other way round. The dominant contribution comes from the ground
state – biexciton coherence, which is induced by the phase of the excitation pulses and
depends on the sum phase of the two interferometers. This behaviour is in an close
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analogy to the results obtained in experiments using down-conversion by a nonlinear
crystal. The quantities presented here have to be averaged at least over the detector
response time. Note, that we can also get the probability for four simultaneous counts
P

4

, which simply reads P
4

⇡ 16⌘8⇢2

bb giving the product probability of a biexciton
generated by a single pulse. This quantity is independent of any phase settings and
we cannot detect more than four photons at exactly the same time, independent of
how strong a pump we employ, due to pairwise anti-bunching.

In fig. 12.8 we depict the evolution of the populations and coherences of the density
matrix for a Gaussian pulse as a function of the pulse duration in an ideal system
without any dephasing. We see that the initially coherence follows the population
until a gap opens and incoherent biexciton population builds up.

155



12 Publication: Coherence and Time-bin Entanglement from a Quantum Dot

γ I  =0.1,0 n p= 4
γ I  =0.05,0 n p= 4
γI  =0.1,0 n p= 2

γ I  =0.05,0 n p= 2
γ I  =0.1,0 n p

γ I0 = 0

P b

2ππ

0.9

0.6

0.3

0

= 0

σ = 12 ps

(c)

Laser pulse area 

P x

2π3π
2ππ

2

0.9

0.6

0.3

0

(b)

P b

0.9

0.6

0.3

σ = 12 ps

σ = 12 ps

(a)

Figure 12.3: (Colour online) a) Biexciton emission probability, Pb (theory) for dif-
ferent dephasing models. We observe a strong damping of the Rabi
oscillations even at moderate �I0 . From this it is clear that the amp-
litude of the intensity-dependant dephasing rate plays a much greater
role than the exponent np. b) Emission probability for a biexciton, Pb,
and exciton photon, Px, as a function of the laser pulse area for linear
(solid line) and quadratic (dashed line) intensity-dependent dephasing
compared to the experimental data, respectively. The error bars are
smaller than symbols. The theoretical parameters, �I0 , are obtained by
fitting the ratio of the first maximum and minimum of the Rabi cycle.
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Figure 12.4: (Colour online) Relative probability for biexciton versus single exciton
excitation in the quantum dot as a function of ⌦2� for two di↵erent
pulse lengths (upper plot). The choice of ⌦2�, which is proportional
to the energy per pulse, as x-axis allows for easier comparison of the
maxima. We see an optimum ratio of about 8 at a still moderate
excitation rate. The lower plot gives the biexciton photon emission
probability as a function of ⌦2�.
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Figure 12.5: (Colour online) An example of (a) real and (b) imaginary part of the
reconstructed density matrix. Measurements used to obtain this density
matrix were performed using 12 ps excitation pulses while the emission
probability was kept at 6%. Here, E (early) and L (late) denote the
measurement basis.
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Figure 12.6: Rabi oscillations for constant dephasing as a function of ⌦2� . The
emission probability for the biexciton, Pb, (left) and the exciton, Px,
(right) level are shown.It is obvious that short pulses introduce damping
of the Rabi oscillations.
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Figure 12.7: Rabi oscillations for linearly intensity-dependent dephasing with an
amplitude of �I0 = 0.05 as a function of the deposited energy. The
emission probability from the biexciton (left) and the exciton (right)
level is shown. From this it is clear that the ratio between the first
Rabi maximum and its first minimum is largely determined by �I0 . The
figure for np = 4 looks fairly similar and is therefore omitted.
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Figure 12.8: Time evolution of exciton ⇢xx and biexciton ⇢bb population as well as
the biexciton-ground coherence as a function of time for a Gaussian
pulse of � = 12 ps.
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J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic
ground-state molecules in an optical lattice,” Nature Physics, vol. 6, no. 4,
pp. 265–270, 2010.

[239] L.-M. Duan, E. Demler, and M. Lukin, “Controlling spin exchange interactions
of ultracold atoms in optical lattices,” Physical Review Letters, vol. 91, no. 9,
p. 090402, 2003.

[240] M. Martin, M. Bishof, M. Swallows, X. Zhang, C. Benko, J. Von-Stecher,
A. Gorshkov, A. Rey, and J. Ye, “A quantum many-body spin system in an
optical lattice clock,” Science, vol. 341, no. 6146, pp. 632–636, 2013.

[241] I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic
optical lattice clocks with a relative frequency di↵erence of 1 ⇥ 10�18,” arXiv
preprint arXiv:1405.4071, 2014.

[242] X. Zhang, M. Bishof, S. Bromley, C. Kraus, M. Safronova, P. Zoller, A. Rey, and
J. Ye, “Spectroscopic observation of su (n)-symmetric interactions in sr orbital
magnetism,” Science, vol. 345, no. 6203, pp. 1467–1473, 2014.

[243] Z. Ficek, R. Tanas, and S. Kielich, “Cooperative e↵ects in the spontaneous
emission from two non-identical atoms,” Optica Acta, vol. 33, no. 9, pp. 1149–
1160, 1986.
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