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1 General Overview

The role of Ockham’s Razer in the philosophy of science is to give an idea
or guideline to which theory to root for, amongst a pool of several, if they
all possess the same congruence with gathered data: “From theories fitting
the data equally well, scientists should choose the simplest one”.

Yet, most accurate fit to given data is not the only criterion constituting
a good theory choice. Parsimony, predictive accuracy, explanatory power,
fruitfulness in explaining new insights, testability, repeatability, consistence
with other scientific and philosophical beliefs, . . . should also be considered.

Various synonyms basically refer to the mentioned concept: parsimony, prin-
ciple of simplicity, principle of economy and Ockham’s Razor.

Parsimony as a ground-rule is important in every scientific field, strength-
ening the foundation of any theory. It is cross-disciplinary.

Parsimony is important because science cannot and will not produce any
single conclusion without invoking parsimony. Every logical inference will
at some point disregard some (minor) details in order to come up with a
more general statement, reducing a complex matter down to a few simple
principles. Furthermore, parsimonious models can be much more effective
in terms of data collection or computational time, which is almost always di-
rectly or indirectly connected to a monetary advantage: “Scientists want to
find the truth, but don’t want to spend more time or money than necessary.”

2 Historic Perception

There are two different, but related meanings. On the one hand, parsimony
is an ontological principle, claiming that nature always chooses the simplest
course. On the other hand, it is also an epistemological principle, suggesting
that scientists should choose the simplest theory that fits the data.

From the ancient Greek philosophers to modern-day statisticians, parsimony
has been regarded as a significant property of scientific theories. In the fol-
lowing a few historical instances in various schools of thought throughout
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the centuries shall be examined.

• Aristotle “We may assume the superiority ceteris paribus [over other
equal things] of the demonstration which derives from fewer postulates
or hypotheses.”, and “The principles should, in fact, be as few as
possible, consistently with proving what has to be proved.”

• Claudius Ptolemey in Almagest (gold-standard astronomy book
throughout the middle age) invoked parsimony to help decide between
theories of planetary motion.

• Thomas Aquinas “If a thing can be adequately done by means of
one, it is superfluous to do it by means of several; for we observe that
nature does not employ two instruments where one suffices.”

• Robert Grosseteste also emphasised parsimony, held it as a real
objective principle of nature more than as a criterion of good expla-
nations.

An important role in this historic discussion must be attributed to William
of Ockham, a medieval scholar, probably best known for his principle of
parsimony, Ockham’s Razor : “Plurality is not to be posed without neces-
sity.” (“pluralitas non est ponanda sine necessitate.”) and further, “What
can be explained by the assumption of fewer things is vainly explained by the
assumption of more things.”. The common form of this principle, “Entities
must not be multiplied without necessity.” (“entita non sunt multiplicanda
sine necessitate”), does not seem to be his actual phrasing.

Ockham demands that “everyone who makes a statement must have a signif-
icant reason for its truth”, where a significant reason can be an observation
of a fact , an immediate logical insight or a divine relation or a deduction
from there. Though experience seems to justify plurality, “one should not
complicate explanations where simple ones will suffice” or, to be more dog-
matic, ”prefer the simplest model that fits the data accurately”.

Ockham insisted on parsimony to be an epistemological principle,, in con-
trast to his predecessor R. Grosseteste or his teacher John Duns Scotus. “To
insist that nature always takes the simplest path is to limit God’s power”.
Therefore, he shifted simplicity from the coursed of nature to the theories
which are formulated about it.

A striking example is Ockham’s rejection of the impetus theory of motion
(Jean Buridan, based on Aristotle) [Impetus: a force a mover embeds into
an object when setting it in motion]: “Motion is a concept, having no reality
apart from moving bodies, to describe the fact that from instant to instant a
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moving body changes its spacial relation to some other body without inter-
mediate rest. There is no need to postulate any external or internal efficient
cause to explain such a sequence of events. “Motion is neither a separate
thing, nor a property of a thing, but rather a modification of existing things,
namely, a change of location over time.”. This idea lead to the development
of the impulse concept in classical mechanics in the 17th century.

Having devoted a closer treatment to William of Ockham, let us return
to more instances of parsimony throughout the history of science.

• Nicolaus Copernicus brought forward the heliocentric cosmology
as opposed to the - at that time - established geocentric one, mainly
based on arguments in the realm of parsimony. Putting the sun in the
center with planets, including the earth, orbiting around it, allowed for
a description relying on less cycles and epicycles. With this he could
also unify parameters, bringing together the characteristic times for
the sun, mercury and venus. The experimental accuracy did not suffice
to justify any of these claims. Copernicus based this concept purely
on the grounds of simplicity. Bessel, through parallax measurements,
finally confirmed the hypothesis - over a century later.

For balance, a quite prominent example of parsimony gone wrong shall also
be mentioned.

• Galileo Galilei tried to unify the Aristotelian dynamics, which claim
that there are two types of motion: outside the sphere of the moon
only circular motion is possible and below the moon sphere there is
only rectilinear motion with heavy bodies moving downwards to the
center of the earth and lighter -than-air bodies moving straight up.
Galileo claimed tat the latter is an illusion and, in fact, only circular
motion exists: a ball falling from a tower follows a curved trajectory
when observed from off the earth. [Tough this is certainly wrong, the
underlying thinking of a unified theory of motion is very comprehen-
sible and realised nowadays in the gRT.]

Moving forward,

• Isaac Newton formulated parsimony as an ontological and episte-
mological concept as the first two rules in his philosophiae naturalis
principia mathematica, his magnum opus.

• Gottfried W. Leibniz proved that the path difficulty of a light ray
(geometric path times resistance of the medium) is a minimum, using
his differential calculus.

• Albert Einstein after having found the Einstein equations in the gRT
concluded: “God would not have passed up the opportunity to make
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nature that simple.”. Also, “Everything should be made as simple as
possible, but not simpler.”.

More recently, statisticians also observed two things: First, simple theories
tend to make more reliable predictions (Bayesian statistics gives simple the-
ories the highest prior probabilities; resulting posterior probabilities will also
be higher for simpler theories). And secondly, there is also a considerable
gain in accuracy and efficiency.

In addition, nowadays with sensible computing power at hand, parsimo-
nious models are the easiest to test, to implement, etc. and also use the
least calculation time.

Parsimony in general can be understood as an instance of a larger en-
tity: beauty (compact formulas, clear pictures, comprehendible explana-
tions, etc.)

In conclusion, history has shown that many paradigm shifts were brought
about on the basis of parsimony, much rather than inspired by new mea-
surements. Also, false theories would rather conflict with parsimony, than
with data (e.g. Copernicus/Bessel). The lesson that can be gained from this
is, that employing parsimony alongside theories and data, most likely puts
a scientist to the cutting edge of his field.

3 Principles & Example

Let us now review a few basic principles and thereby explain the lines in fig.
1.

1. Signal and Noise
At first we have to address the issue why the two curves corresponding
to signal and noise look differently: signal typically has a few simple
causes and can be captured by a relatively parsimonious model, while
noise has manny a different origins and is usually, of corse, not repro-
ducible. So, therefore the initial focus on signal suppresses the noise,
yet, after most of the signal has been captured, noise starts to be
picked up as well.

2. Population and Sample
A crucial distinction has to be made between population and sample.
A sample is a sub-group of a population which is subject to some
sort of experiment, where the outcome ought to be generalised and is
desirably applicable to the entire population.

3. Prediction and postdiction
Prediction, “population-diction”, is concerned with model-building
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Figure 1: Accuracy vs. Parsimony (from ref. [1])

and the goal is to fit the population (future measurements, etc.), while
postdiction, “sample-diction”, tries to explain the data at hand. Noise
has no predictive value, hence predictive accuracy is helped by captur-
ing signal and hindered by capturing noise, therefore the prediction-
line is (signal− noise). In increasing postdictive accuracy, however,
we do not care about the distinction between signal and noise, thus
the postdiction curve is accounted for by (signal + noise). The really
important thing to note here is that most accurate prediction, not
postdiction, is the goal in science.

4. The Curve-Fitting Problem
On the left-hand side of fig. 2 we find a noiseless data set and three
possible model choices: two linear correlations A and B, and one of
higher order, denoted by C. Almost intuitively, we would prefer line B,
mainly out of a parsimony argument, since C also fits all data points.
The simpler model seems more likely to predict correct values in the
future. If a model with less parameters than data points fits some
data set, it has already had some success. Three main advantages of
a simpler model shall be named: first, a simpler model is much more
vulnerable to falsification. Secondly, it delivers a more comprehensible
description of the underlying process and thirdly, in a family of simple
models the decision to pick out one is usually easier (here only one line
would fit all the data points, while a multitude of polynomials of higher
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Figure 2: Curve-Fitting (from ref. [1])

order could easily fit all data points). Shifting to the picture on the
right-hand side: in this case given the noisy data, one would tend to
ask for more measurements. Though “experience justifies plurality”,
smooth and simpler behaviour have been observed much more often
than abrupt changes or chaos.

5. Related Data
Experience shows that data concerning the same or a similar subject
are usually related. This is in such a way, that given a larger data
set with a few values missing, one will find his or her educated guess,
inspired by the data that was there, to be not far from the actual value
most of the time.

6. Statistical Tools
SInce a substantial mathematical treatment of statistical analysis is
not what we have in mind here, we will restrict ourselves to mentioning
two expressions and defining them schematically: first, the sum of
squares for a data set A, where 〈A〉 denotes the grand mean of the
data A, is

SS(A) =
∑
a∈A

(a− 〈A〉)2 ,

and secondly, the statistical efficiency of a model can be determined
as

Γ =
SS (data around true values)

SS (model around true values)
.

Γ = 1 means that the data is as accurate as the model, Γ = n > 1
suggests that the model is more accurate than the data and the model’s
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accuracy is equivalent to the accuracy one could draw from collecting n
times as much data. Often also the word “signal-to-noise-ratio” shows
up, even in a colloquial way. In a more rigorous statistical sense this
would be SS(signal)/SS(noise).

Let us now examine a prominent, yet easily comprehensible example of
parsimony supporting scientific progress: the theory of genetics by Georg
Mendel. He conducted experiments with peas, identifying certain proper-
ties passed on from generation to generation, where there were two different
categories of properties: the ones that would immediately show up in the
next generation and the ones that would be suppressed at first but show up
again a few generations later down the family tree. The first ones he called
dominant trails, while the second ones were dubbed the recessive ones.

Mendel treated seven different properties in his experiments which lead him
to close to 1000 individual observations per trail and a ratio of dominant vs.
recessive of between 2.5 and 3.2, roughly.

Invoking two parsimony arguments he was able to come up with a theo-
retical ratio. First, by implicitly postulating an underlying phenomenon,
he combined the seven different trails, examining distinct properties, to one
huge dominant/recessive-trial, obtaining an average ratio of 2.81 and than
suggested that the ratio should be made up of small integers (simplicity and
beauty), thus ending up at a result of 3:1.

With modern knowledge about DNA and the Binomial distribution this
result can be confirmed, which is amazing given the fact, that the two ab-
stractions were purely based on parsimony.

For further, more complex examples, including a precisely treatable mathe-
matical example we refer the interested reader to ref [1].

4 Philosophic Perspective

Let us now discuss three major issues from a philosophical point of view:

1. Parsimony vs. Accuracy Trade-Off
The challenge here is to combine the concept of simplicity with a ceteris
paribus clause about an equally good fit to the data. How do we decide
the respective weights of simplicity versus fit? The discussion does not
arise in dealing with postdiciton: given population data less parsimony
increases the accuracy, there is no self-suggested optimum. In most
of the cases, though, prediction is the goal and therefor a model at
the top of Ockham’s hill (fig. 1, global maximum of prediction line)
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leaves us with a sensible parsimony/accuracy-trade-off, since past this
maximum, neither simplicity, nor a better fit are promoted.

2. Prediction & Truth
Predictive success is often taken as evidence of truth. A famous his-
torical example of this concept is Halley’s calculation of the orbit of
a comet, which since then bares his name. He predicted the return
of the comet correctly, relying on Newtonian mechanics and thereby
accumulated acceptance for his theory of the mechanics of comets.
Correct predictions are often viewed as truth, especially if a theory
has proven to hold in numerous instances, so that mere luck seems
very implausible. Having this association between predictive success
and truth is not so much troubling for scientists, since anyway there is
an advancement, but this notion is disturbing to philosophers, because
frequently generic models, though not “entirely true” may suffice to
generate respectable accuracy (and therefore are hard to distinguish
from the true story).

3. Parsimony & nature
If we incorporate parsimony in our theories (epistemological parsi-
mony), we implicitly accept ontological parsimony, that is to say that
nature is simple. “Induction, uniformity, causality, intelligibility and
other scientific principles all implicate parsimony.”, so “Were nature
not simple, science would loose all its foundational principles at once.”.
And in conclusion, most importantly, “The beginning of science’s sim-
plicity is simple questions.”

References

[1] H. G. Gauch, Scientific Method in Practise, Cambridge University
Press, 2003

[2] E. Giannetto, The impetus theory: Between history of physics and
science education, in Science & Education, Vol. 2, No. 3

[3] http://en.wikipedia.org/wiki/William of ockham

8


